• Title/Summary/Keyword: 자동측정시스템

Search Result 1,047, Processing Time 0.03 seconds

Automatic Recommendation of (IP)TV programs based on A Rank Model using Collaborative Filtering (협업 필터링을 이용한 순위 정렬 모델 기반 (IP)TV 프로그램 자동 추천)

  • Kim, Eun-Hui;Pyo, Shin-Jee;Kim, Mun-Churl
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.238-252
    • /
    • 2009
  • Due to the rapid increase of available contents via the convergence of broadcasting and internet, the efficient access to personally preferred contents has become an important issue. In this paper, for recommendation scheme for TV programs using a collaborative filtering technique is studied. For recommendation of user preferred TV programs, our proposed recommendation scheme consists of offline and online computation. About offline computation, we propose reasoning implicitly each user's preference in TV programs in terms of program contents, genres and channels, and propose clustering users based on each user's preferences in terms of genres and channels by dynamic fuzzy clustering method. After an active user logs in, to recommend TV programs to the user with high accuracy, the online computation includes pulling similar users to an active user by similarity measure based on the standard preference list of active user and filtering-out of the watched TV programs of the similar users, which do not exist in EPG and ranking of the remaining TV programs by proposed rank model. Especially, in this paper, the BM (Best Match) algorithm is extended to make the recommended TV programs be ranked by taking into account user's preferences. The experimental results show that the proposed scheme with the extended BM model yields 62.1% of prediction accuracy in top five recommendations for the TV watching history of 2,441 people.

An Adaptive Colorimetry Analysis Method of Image using a CIS Transfer Characteristic and SGL Functions (CIS의 전달특성과 SGL 함수를 이용한 적응적인 영상의 Colorimetry 분석 기법)

  • Lee, Sung-Hak;Lee, Jong-Hyub;Sohng, Kyu-Ik
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.641-650
    • /
    • 2010
  • Color image sensors (CIS) output color images through image sensors and image signal processing. Image sensors that convert light to electrical signal are divided into CMOS image sensor and CCD image sensor according to transferring method of signal charge. In general, a CIS has RGB output signals from tri-stimulus XYZ of the scene through image signal processing. This paper presents an adaptive colorimetric analysis method to obtain chromaticity and luminance using CIS under various environments. An image sensor for the use of colorimeter is characterized based on the CIE standard colorimetric observer. We use the method of least squares to derive a colorimetric characterization matrix between camera RGB output signals and CIE XYZ tristimulus values. We first survey the camera characterization in the standard environment then derive a SGL(shutter-gain-level) function which is relationship between luminance and auto exposure (AE) characteristic of CIS, and read the status of an AWB(auto white balance) function. Then we can apply CIS to measure luminance and chromaticity from camera outputs and AE resister values without any preprocessing. Camera RGB outputs, register values, and camera photoelectric characteristic are used to analyze the colorimetric results for real scenes such as chromaticity and luminance. Experimental results show that the proposed method is valid in the measuring performance. The proposed method can apply to various fields like surveillant systems of the display or security systems.

Driver's Status Recognition Using Multiple Wearable Sensors (다중 웨어러블 센서를 활용한 운전자 상태 인식)

  • Shin, Euiseob;Kim, Myong-Guk;Lee, Changook;Kang, Hang-Bong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.6
    • /
    • pp.271-280
    • /
    • 2017
  • In this paper, we propose a new safety system composed of wearable devices, driver's seat belt, and integrating controllers. The wearable device and driver's seat belt capture driver's biological information, while the integrating controller analyzes captured signal to alarm the driver or directly control the car appropriately according to the status of the driver. Previous studies regarding driver's safety from driver's seat, steering wheel, or facial camera to capture driver's physiological signal and facial information had difficulties in gathering accurate and continuous signals because the sensors required the upright posture of the driver. Utilizing wearable sensors, however, our proposed system can obtain continuous and highly accurate signals compared to the previous researches. Our advanced wearable apparatus features a sensor that measures the heart rate, skin conductivity, and skin temperature and applies filters to eliminate the noise generated by the automobile. Moreover, the acceleration sensor and the gyro sensor in our wearable device enable the reduction of the measurement errors. Based on the collected bio-signals, the criteria for identifying the driver's condition were presented. The accredited certification body has verified that the devices has the accuracy of the level of medical care. The laboratory test and the real automobile test demonstrate that our proposed system is good for the measurement of the driver's condition.

Development of Heat Dissipation Measuring System for 1.2-kW BLDC Motor (1.2kW 급 BLDC 모터의 열 발산 측정 시스템 개발)

  • Lee, Injun;Ye, Jungwoo;Lee, Daehun;Hwang, Pyung;Shim, Jaesool
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1423-1428
    • /
    • 2013
  • In this study, a heat dissipation measurement system is developed to analyze a 1.2-kW BLDC motor. It is important to check the temperature of the motor because an increase in temperature causes problems in the motor insulations, which in turn influences the motor life. A generator for a vehicle is installed to set up a load. We changed the load from 165 to 495 W. While the rpm varies from 2000 to 4000 under various load conditions, the changes in temperature were measured for the operating period by using a thermocouple. The results of experiments conducted under natural convection conditions suggest that the temperature was not stationary with the rpm, load, and coil of the motor and it kept increasing over $120^{\circ}C$. However, under forced convection conditions, the temperature stationarily reached $84^{\circ}C$ after 4000 s. The difference between the maximum and the minimum temperatures was $10-26^{\circ}C$ with an increase in the rpm and load. The orders of high temperature were as follows: motor coil (Ch#1), side of motor surface (Ch#5), inside of motor cap (Ch#2), upper side of motor surface (Ch#4), and inner wall of the motor (Ch#3).

Research on Classification of Sitting Posture with a IMU (하나의 IMU를 이용한 앉은 자세 분류 연구)

  • Kim, Yeon-Wook;Cho, Woo-Hyeong;Jeon, Yu-Yong;Lee, Sangmin
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.3
    • /
    • pp.261-270
    • /
    • 2017
  • Bad sitting postures are known to cause for a variety of diseases or physical deformation. However, it is not easy to fit right sitting posture for long periods of time. Therefore, methods of distinguishing and inducing good sitting posture have been constantly proposed. Proposed methods were image processing, using pressure sensor attached to the chair, and using the IMU (Internal Measurement Unit). The method of using IMU has advantages of simple hardware configuration and free of various constraints in measurement. In this paper, we researched on distinguishing sitting postures with a small amount of data using just one IMU. Feature extraction method was used to find data which contribution is the least for classification. Machine learning algorithms were used to find the best position to classify and we found best machine learning algorithm. Used feature extraction method was PCA(Principal Component Analysis). Used Machine learning models were five : SVM(Support Vector Machine), KNN(K Nearest Neighbor), K-means (K-means Algorithm) GMM (Gaussian Mixture Model), and HMM (Hidden Marcov Model). As a result of research, back neck is suitable position for classification because classification rate of it was highest in every model. It was confirmed that Yaw data which is one of the IMU data has the smallest contribution to classification rate using PCA and there was no changes in classification rate after removal it. SVM, KNN are suitable for classification because their classification rate are higher than the others.

A Studs on Exposure to Organic Dust and Ammonia in Poultry Confinement Buildings (일부 육용 양계 농업인의 유기먼지와 암모니아 노출에 관한 연구)

  • Shin, Cheol-Lim;Lee, Kyung-Suk;Kim, Kyung-Ran;Kang, Tae-Sun;Paik, Nam-Won
    • Journal of agricultural medicine and community health
    • /
    • v.29 no.2
    • /
    • pp.303-314
    • /
    • 2004
  • Objectives: This study was carried out to assess exposure levels of organic dusts and ammonia in poultry farms in Korea. Methods: A total of six poultry farms were investigated. The farms were located in Namwon, Chonlabuk-do and in Kae-San, Chungchongbuk-do. This study consisted of a questionnaire and measuring organic dusts and ammonia. The questionnaire included the characteristics of the farms, work patterns and the tasks of the poultry farms. Results and Conclusions: The farmers raised the chickens 45 times a year and the average number of years in the poultry farm were eight years ranging from 2 to 12 years. They worked for seven days per week and the average hours spent caring the chickens are 6.3 hours per day. The duration of staying in the confinement buildings was 3.3 hours per day. The work time in summer was longest. The feed and the water supply systems were automatic and the control of ventilation windows used "winch curtain" was semiautomatic. They used mechanical ventilation system in winter and used dilution ventilation system in the other seasons. The geometric mean concentration of total and respirable dust sampled in the poultry confinement buildings was 4.0 mg/$m^3$and 0.9 mg/$m^3$ respectively. The ratio of respirable to total dusts range from 9 to 49 percent. There was no sample exceeding the criteria 10 mg/$m^3$ for total dust and 3 mg/$m^3$ for respirable dust in farms. The criteria have been recommended by Korean Ministry of Labor and American Conference of Governmental Industrial Hygienist. The personal respirable dusts measured during a circle work averaged geometric mean concentration 1.4 mg/$m^3$ Two personal samples were exceeded the threshold 3 mg/$m^3$. There was a positive relation between an index and the personal samples of respirable dusts($R^2$=0.98). The index is calculated by multipling the total number of chickens in the farm by the age of the chickens and then dividing by the volume of the confinement building. The geometric mean concentration of area and personal ammonia samples was 23.3 ppm and 22.2 ppm, respectively. Some of the ammonia samples, both area and personal samples, exceeded the short term exposure limit value 35 ppm.

  • PDF

Assessment of Imaging Distortion in Magnetic Resonance Imaging for Stereotactic Radiosurgery: Through Phantom Study (뇌정위 방사선수술 시스템을 위한 자기공명영상의 공간적 왜곡의 측정 : 모형실험을 통한 연구)

  • 박선원;한문희;김동규;정현태;송인찬
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.7-13
    • /
    • 2000
  • Purpose : To assess the distortion of MRI with the Leksell stereotactic radiosurgery system in variable pulse sequence and imaging plane through phantom study, to find most adequate imaging plane and pulse sequence for stereotactic radiosurgery system. Materials and methods : We made the phantoms for MRI and get images in variable conditions and analyzed the image distortion using image analysis program, and statistically using paired student t-test. Results : The transeverse plane images had acceptable error ranges bless than 1.5mm) in all pulse sequence in both the analysis of fiducial marker in stereotactic G-frame and the phantom study. The coronal plane images had unacceptable large errors (more than 1.7mm) in the analysis of fiducial marker in the stereotactic G-frame, but had corrected small errors (less than 1.5mm) in the phantom study. Conclusion : We find from the phantom study that the present MR machines are adequate for stereotactic surgery system in frequently used pulse sequences, and imaging planes.

  • PDF

Development of the Calorimeter to Measure Heat Rate Generated from Battery for EV & HEV (전기자동차용 축전지의 발열량 측정을 위한 열용량계 개발)

  • Yang Cheol-Nam;Park Seong-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.218-220
    • /
    • 1999
  • The performance of the Electric Vehicle and Hybrid Electric Vehicle depends on that of the battery pack composed of series connected batteries. And thermal property is one of the main factors which decide the performance of the battery pack. So heat generation rate from the battery under the various driving mode must be measured as precise as possible because thermal characteristics of the battery affect the driving performance and battery pack's life cycle. Besides, to design and develop the battery thermal management system for the EV and HEV, the measurements of the thermal properties of the batteries are needed. However, the established calorimeter is not adequate to test an EV's battery because its cavity is too small to accommodate the EV's battery. Therefore we developed the calorimeter to test the thermal property of the EV's battery. Its cavity size is 120mm long, 75mm wide and 200mm high. The calorimeter is calibrated by the dummy cell which generates the heat rate from zero to 200W. The measuring accuracy of the calorimeter is within $2\%$ and its voltage stability is 2.5mV in the constant temperature bath.

Development of Portable Multi-function Sensor (Mini CPT Cone + VWC Sensor) to Improve the Efficiency of Slope Inspection (비탈면 점검 효율화를 위한 휴대형 복합센서 개발)

  • Kim, Jong-Woo;Jho, Youn-Beom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2022
  • In order to efficiently analysis the stability of a slope, measuring the shear strength of soil is needed. The Standard Penetration Test (SPT) is not appropriate for a slope inspection due to cost and weights. One of the ways to effectively measure the N-value is the Dynamic Cone Penetration Test (DCPT). This study was performed to develop a minimized multi-function sensors that can easily estimate CPT values and Volumetric Water Content. N value with multi-fuction sensor DCPT showed -2.5 ~ +3.9% error compared with the SPT N value (reference value) in the field tests. Also, the developed multi-fuction sensor system was tested the correlation between the CPT test and the portable tester with indoor test. The test result showed 0.85 R2 value in soil, 0.83 in weathered soil, and 0.98 in mixed soil. As a result of the field test, the multi-function sensor shows the excellent field applicability of the proposed sensor system. After further research, it is expected that the portable multi-function sensor will be useful for general slope inspection.

Observation of Methane Flux in Rice Paddies Using a Portable Gas Analyzer and an Automatic Opening/Closing Chamber (휴대용 기체분석기와 자동 개폐 챔버를 활용한 벼논에서의 메탄 플럭스 관측)

  • Sung-Won Choi;Minseok Kang;Jongho Kim;Seungwon Sohn;Sungsik Cho;Juhan Park
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.436-445
    • /
    • 2023
  • Methane (CH4) emissions from rice paddies are mainly observed using the closed chamber method or the eddy covariance method. In this study, a new observation technique combining a portable gas analyzer (Model LI-7810, LI-COR, Inc., USA) and an automatic opening/closing chamber (Model Smart Chamber, LI-COR, Inc., USA) was introduced based on the strengths and weaknesses of the existing measurement methods. A cylindrical collar was manufactured according to the maximum growth height of rice and used as an auxiliary measurement tool. All types of measured data can be monitored in real time, and CH4 flux is also calculated simultaneously during the measurement. After the measurement is completed, all the related data can be checked using the software called 'SoilFluxPro'. The biggest advantage of the new observation technique is that time-series changes in greenhouse gas concentrations can be immediately confirmed in the field. It can also be applied to small areas with various treatment conditions, and it is simpler to use and requires less effort for installation and maintenance than the eddy covariance system. However, there are also disadvantages in that the observation system is still expensive, requires specialized knowledge to operate, and requires a lot of manpower to install multiple collars in various observation areas and travel around them to take measurements. It is expected that the new observation technique can make a significant contribution to understanding the CH4 emission pathways from rice paddies and quantifying the emissions from those pathways.