• Title/Summary/Keyword: 자동차 진동

Search Result 694, Processing Time 0.024 seconds

Improvement of Mechanical and Corrosion Properties of Mg-Ca-Zn Alloy by Grain Refinement (Grain Refinement를 통한 Mg-Ca-Zn합금의 기계적 특성 및 부식 특성 향상)

  • Kim, Dae-Han;Choi, Jong-Min;Lim, Hyun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.418-424
    • /
    • 2017
  • Magnesium has a higher specific strength than other metals and is widely used industry wide due to its excellent vibration absorption ability and electromagnetic wave shielding property.For example, it is used for automobile parts such as car seat frames and cylinder heads, and is widely used in electronic products such as notebook cases and mobile phone cases. In addition, it is in the spotlight as a bone-implant material used to assist in the treatment of damaged bones when the bones are cracked or broken. Currently, Ti alloy, stainless steel and Co-Cr-Mo alloy are used as the implant material, and the Mg alloy remains in research stage. The current problem with bone implant implants is that the patients must undergo reoperation to remove the implants after joint surgery. Magnesium, however, can achieve sufficient strength compared to current materials. In addition, since it is self-decomposed after the recovery, reoperation is not necessary. In this paper, Mg alloys were designed by adding harmless Ca and Zn to the human body. In order to improve the strength and corrosion resistance, the final alloy was designed by adding a small amount of Sr as a grain refiner. The radioactive elements of Sr are harmful to the human body, but other naturally occurring Sr elements are harmless. Microstructure analysis of the alloys was performed by optical microscopy and scanning electron microscopy. The mechanical properties and corrosion characteristics were evaluated by tensile test, potentiodynamic test and immersion test.

The Availability of Automobile Catalytic Convert of Copper Based on the DFT Calculations of Cu-NO Complexes (Cu-NO 복합체에 대한 DFT 계산에 따른 Cu의 자동차 촉매변환기 적합성)

  • Ha, Kwanga;Lee, Min-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.5
    • /
    • pp.358-363
    • /
    • 2018
  • The purpose of this study is to show the possibility of using Cu catalyst in removal of $NO_x$ from automobile exhaust which is regarded as the primary source of fine dust PM2.5. The energy and the bond lengths of the three possible structures of Cu-NO complex, which is formed by binding NO molecule to Cu, and the changes in IR and Raman spectra are calculated using MPW1PW91 method on the level of 6-311(+)G(d,p) of basis sets with Gaussian 09 program. As a result, the enthalpy of formation of the Cu-NO complexes are obtained as ${\Delta}H=104.89$, 91.98, -127.48 kJ/mol for the linear, bent, and bridging forms of them, respectively. And the bond lengths between N and O in NO complexes, which becomes longer than NO molecule, indicates that O is easily reduced from Cu-NO. In addition, the Cu-NO complexes using Cu catalyst can be easily measured by infrared or Raman spectroscopy because in the IR and Raman spectra of the NO and Cu-NO complexes the positon and the intensity of bands are definitely different in each vibration mode.

Assessment of Vibration Produced by Pneumatic Hand Tools Used in Automobile Assembly (자동차 조립공정에서 공기압력식 진동공구의 국소진동평가)

  • Kim, Sun Sul;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • This study was conducted at an automobile assembly line located in Kyonggi-do, Korea from January 16 to February 28, 1995. The purposes of this study were to assess worker exposures to hand-arm vibration and the performance of gloves for reduction of vibration. The exposure to vibration was measured using to the ISO 5349(1986) method. Vibration acceleration and frequency spectra for each tool were determined on-line replicating actual working conditions and analyzed together with exposure time for evaluating individual worker exposure. Eight pneumatic hand tools, 60 workers exposured to hand-arm vibration, and three pairs of gloves were involved in this study. Results are summarized as follows. 1. Dominant frequencies of vibration for all tools(n=8) measured in this study ranged from 250 Hz to 800 Hz. 2. There was no significant correleration between dominant frequencies and free running speed (p>0.05). 3. Total predicted exposure times of using impact, hammer type did not exceed 40 minutes, but metal finish task, using grinder and sander exceeded 40 minutes. Total exposure time affected significantly the frequency-weighted, 4 hr equivalent acceleration. 4. Predicted prevalence and observed exposure period data were compared in workers(n=60), according to ISO 5349. In this results, 23(50.0 %) and 24(48.07 %) persons exceeded the mean latency periods for vibration-induced white finger(VWF) at 10 % (n=46) and 50 % (n=52) standards, respectively. On the basis of ISO equation, mean latent periods for VWF were 3.23, 4.72 years at 10 %, 50 % standards, respectively. 5. Reduction of vibration by gloves was evaluated. Since impact pneumatic tools produced low frequency vibrations, conventional gloves did not provide any protection. Gloves A and C amplify somewhat the signal at frequency below 400 Hz; the attenuation increases progressively by frequency to reach 18 dB ($7.94{\times}10^{-6}m/s^2$) at 1,000 Hz, slightly worsening Glove B did not provide any protection and made the situation slightly worse. However, since they make the hands warm, the occurrence of vibration-induced white fingers may be reduced.

  • PDF

A Study on the Effects of Absorptive Treatments for the Highway Noise Barriers (도로교통소음의 방음벽 흡음효과에 관한 연구)

  • 김재석;루이스칸;김갑수
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.146-156
    • /
    • 1998
  • To mitigate excessive noise from highways, and high speed rail road, it is often necessary to construct a noise barrier. Absorptive barroer attenuation solution is obtained for the problem of diffration of a plane wave sound source by a semi-infinite plane. A finite region in the vicinity of the edge has an highly absorbing boundary condition ; the remaining portion of the half plane is rigid. The problem which is solved is a mathematical model for a hard barrier with an absorbing edge. If the wavelength of the sound is much smaller than the length scale associated with the barrier, the diffraction process is governed to all intents and purpose by the solution to a standard problem of diffraction by a semi-infinite hard plane with an absorbent edge. It is concluded that the absorbing material that comprises the edge need only be of the order of a wavelength long to have approximately the same effect, on the sound attenuation in the shadow side of the barrier. Traffic noise is composed of thousands of sources with varying frequency content. To simplify noise predictions when barriers are present, an effective frequency of 550Hz may be used to represent all vehicles. The wavelength of sound at f=550Hz for traffic noise is about 2 feet. According to the above conclusion, an absorptive highway noise barrier is only needed to cover to cover approximately a 2 foot length of absorbing material. It would be more economical to cover only the region in the immediate vicinity of the edge with highly sound obsorbent material.

  • PDF

A Study on Robust Feature Vector Extraction for Fault Detection and Classification of Induction Motor in Noise Circumstance (잡음 환경에서의 유도 전동기 고장 검출 및 분류를 위한 강인한 특징 벡터 추출에 관한 연구)

  • Hwang, Chul-Hee;Kang, Myeong-Su;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.187-196
    • /
    • 2011
  • Induction motors play a vital role in aeronautical and automotive industries so that many researchers have studied on developing a fault detection and classification system of an induction motor to minimize economical damage caused by its fault. With this reason, this paper extracts robust feature vectors from the normal/abnormal vibration signals of the induction motor in noise circumstance: partial autocorrelation (PARCOR) coefficient, log spectrum powers (LSP), cepstrum coefficients mean (CCM), and mel-frequency cepstrum coefficient (MFCC). Then, we classified different types of faults of the induction motor by using the extracted feature vectors as inputs of a neural network. To find optimal feature vectors, this paper evaluated classification performance with 2 to 20 different feature vectors. Experimental results showed that five to six features were good enough to give almost 100% classification accuracy except features by CCM. Furthermore, we considered that vibration signals could include noise components caused by surroundings. Thus, we added white Gaussian noise to original vibration signals, and then evaluated classification performance. The evaluation results yielded that LSP was the most robust in noise circumstance, then PARCOR and MFCC followed by LSP, respectively.

On-line Fundamental Frequency Tracking Method for Harmonic Signal and Application to ANC (조화신호의 실시간 기본 주파수 추종 방법과 능동소음제어에의 응용)

  • Kim, Sun-Min;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.263-268
    • /
    • 2000
  • In this paper, a new indirect feedback active noise control (ANC) scheme based on the fundamental frequency estimation is proposed for systems with a harmonic noise. When reference signals necessary for feedforward ANC configuration is difficult to obtain, the conventional ANC algorithms for multi-tonal noise do not measure the reference signals but generate them with the estimated frequencies. However, the beating phenomena, in which certain frequency components of the noise vanish intermittently, may make the adaptive frequency estimation difficult. The confusion in the estimated frequencies due to the beating phenomena makes the generated reference signals worthless. The proposed algorithm consists of two parts. The first part is a reference generator using the fundamental frequency estimation and the second one is the conventional feedforward control. We propose the fundamental frequency estimation algorithm using decision rules, which is insensitive to the beating phenomena. In addition, the proposed fundamental frequency estimation algorithm has good tracking capability and lower variance of frequency estimation error than that of the conventional cascade ANF method. We are also able to control all interested modes of the noise, even which cannot be estimated by the conventional frequency estimation method because of the poor SIN ratio. We verify the performance of the proposed ANC method through simulations for the measured cabin noise of a passenger ship and the measured time-varying engine booming noise of a passenger vehicle.

  • PDF

Benchmark Test of CFD Software Packages for Sunroof Buffeting in Hyundai Simplified Model (차량 썬루프 버페팅 현상에 대한 전산 해석 소프트웨어의 예측 성능 벤치마크 연구)

  • Cho, Munhwan;Oh, Chisung;Kim, HyoungGun;Ih, Kang-duck
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.171-179
    • /
    • 2014
  • Sunroof buffeting is one of the most critical issues in the vehicle wind noise phenomena. The experimental approach to solve this issue typically requires a lot of time and resources. To reduce time and cost, the numerical approach could be taken, which can also privide more insights into physical phenomena involved in sunroof buffeting, only if the accuracy in its predictions are guranteed. The benchmark test of various numerical solvers is carried out for the buffeting behavior of a simplified vehicle body, the Hyundai simplified model(HSM). The results of each solver are compared to the experimental measurements in a Hyundai aeroacoustic wind tunnel(HAWT) at various wind speeds. In particular, acoustic response tests were performed and the results were provided prior to all simulations in order to consider the real world effects that could introduce discrepancies between the numerical and experimental approaches. Through this study, most solvers can demonstrate an acceptable accuracy level for actual commercial development and high precision experimental data and computational prediction priories can be shared in order to promote the numerical accuracy level of each numerical solver.

Structural Analysis of Power Transmission Mechanism of Electro-Mechanical Brake Device for High Speed Train (고속열차용 전기기계식 제동장치의 동력전달 기구물에 대한 구조해석)

  • Oh, Hyuck Keun;Beak, Seung-Koo;Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.237-246
    • /
    • 2019
  • The Electro-Mechanical Brake (EMB) is the next generation braking system for automobiles and railway vehicles. Current brake systems for high-speed trains generate a braking force using a pneumatic cylinder, but EMB systems produce that force through a combination of an electric motor and a gear. In this study, an EMB operation mechanism capable of generating a high braking force was proposed, and structural and vibration analyses of the gears and shafts, which are the core parts of the mechanisms, were performed. Dynamic structural analysis confirmed that the maximum stress in the analysis model was within the yield strength of the material. In addition, the design that maximizes the diameter of the motor shaft was found to be advantageous in strength, and large shear stress could be generated in the bolt fixing the gear and eccentric shaft. In addition, a test apparatus that can reproduce the mechanism of the analytical model was fabricated to measure the strain of the fixed bolt part, which is the most vulnerable part. The strain measurement results showed that the error between the analysis and measurement was within 10%, which could verify the accuracy of the analytical model.

Active Control of Harmonic Signal Based on On-line Fundamental Frequency Tracking Method (실시간 기본주파수 추종방법에 근간한 조화 신호의 능동제어)

  • 김선민;박영진
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1059-1066
    • /
    • 2000
  • In this paper. a new indirect feedback active noise control (ANC) scheme barred on the fundamental frequency estimation is proposed for systems with a harmonic noise. When reference signals necessary for feedforward ANC configuration are difficult to obtain, the conventional ANC algorithms for multi-tonal noise do not measure the reference signals but generate them with the estimated frequencies.$^{(4)}$ However, the beating phenomena, in which certain frequency components of the noise vanish intermittently, may make the adaptive frequency estimation difficult. The confusion in the estimated frequencies due to the beating phenomena makes the generated reference signals worthless. The proposed algorithm consists of two parts. The first part is a reference generator using the fundamental frequency estimation and the second one is the conventional feedforward control. We propose the fundamental frequency estimation algorithm using decision rules. which is insensitive to the beating phenomena. In addition, the proposed fundamental frequency estimation algorithm has good tracking capability and lower variance of frequency estimation error than that of the conventional cascade ANF method.$^{(4)}$ We are also able to control all interested modes of the noise, even which cannot be estimated by the conventional frequency estimation method because of the poor S/N ratio. We verify the performance of the proposed ANC method through simulations for the measured cabin noise of a passenger ship and the measured time-varying engine booming noise of a passenger vehicle.

  • PDF

Fabrication of Piezoresistive Silicon Acceleration Sensor Using Selectively Porous Silicon Etching Method (선택적인 다공질 실리콘 에칭법을 이용한 압저항형 실리콘 가속도센서의 제조)

  • Sim, Jun-Hwan;Kim, Dong-Ki;Cho, Chan-Seob;Tae, Heung-Sik;Hahm, Sung-Ho;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.21-29
    • /
    • 1996
  • A piezoresistive silicon acceleration sensor with 8 beams, utilized by an unique silicon micromachining technique using porous silicon etching method which was fabricated on the selectively diffused (111)-oriented $n/n^{+}/n$ silicon subtrates. The width, length, and thickness of the beam was $100\;{\mu}m$, $500\;{\mu}m$, and $7\;{\mu}m$, respectively, and the diameter of the mass paddle (the region suspended by the eight beams) was 1.4 mm. The seismic mass on the mass paddle was formed about 2 mg so as to measure accelerations of the range of 50g for automotive applications. For the formation of the mass, the solder mass was loaded on the mass paddle by dispensing Pb/Sn/Ag solder paste. After the solder paste is deposited, Heat treatment was carried out on the 3-zone reflow equipment. The decay time of the output signal to impulse excitation of the fabricated sensor was observed for approximately 30 ms. The sensitivity measured through summing circuit was 2.9 mV/g and the nonlinearity of the sensor was less than 2% of the full scale output. The output deviation of each bridge was ${\pm}4%$. The cross-axis sensitivity was within 4% and the resonant frequency was found to be 2.15 KHz from the FEM simulation results.

  • PDF