• Title/Summary/Keyword: 자동차 번호판 인식 시스템

Search Result 87, Processing Time 0.028 seconds

A study on license plate area extraction of labeling the vehicle images (레이블링된 차량영상에서 번호판 영역 추출을 위한 기법 연구)

  • Park, Jong-dae;Park, Byeong-ho;Choi, Yong-seok;Seong, Hyoen-kyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.408-410
    • /
    • 2014
  • In this paper a license plate area extraction of labeling the vehicle images is proposed. Studies on license plate recognition systems have largely been conducted and there is a tendency of increasing license plate recognition rates. In this paper a license plate region is extracted from an image labeling for the region of interest and research on technology for labeling sample image using the Otsu algorithm to binary.

  • PDF

Character Segmentation of Binary Vehicle Plate using Modified Run Length Coding (변형된 Run Length Coding 기법을 이용한 이치화된 자동차 번호판 영상에서의 문자 분리)

  • 이도엽;김형재;배익성;이철희;차의영
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.04a
    • /
    • pp.138-142
    • /
    • 1998
  • 자동차 번호판 인식시스템은 영상획득, 번호판 추출, 전처리(이치화), 문자영역분할, 문자인식 등의 5가지 핵심부분으로 구성되어 있다. 따라서 자동차 번호판 인식시스템의 최종 인식률은 각 단계의 성능에 따라 직접적인 영향을 받는다. 본 논문은 컴퓨터 비젼의 한 분야인 영상처리 기법을 이용한 이치화된 자동차 번호판의 문자영역 추출에 관한 연구로서 문자 인식단계에서 높은 인식률을 확보하기 위해서 가장 중요한 입력 데이터의 상태를 보다 깨끗하게 정확하게 분리하는데 변형된 Run Length Coding 기법을 이용하여 효과적이고 빠른 문자 영역 분리 방법을 제안함으로서 처리속도의 향상은 물론 잡영에도 강한 문자 영역 분리 시스템을 구현하였다.

  • PDF

Vehicle License Plate Extraction using Multi-level Image Processing Methods (다단계 영상처리 기법을 이용한 차량번호판 추출방법)

  • Ahn, Woon-Ki;Chang, Jae-Khun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.275-278
    • /
    • 2003
  • 자동차 번호판 인식 시스템은 영상획득, 번호판추출, 전처리(이진화), 문자영역 분할, 문자인식 등의 5가지 핵심 부분으로 구성된다. 따라서 자동차 번호판 인식 시스템의 최종 인식율은 각 단계의 성능에 따라 직접적인 영향을 받는다. 본 논문은 영상처리 기법을 이용하여 영상에서 번호판 영역을 추출을 위한 연구로 문자인식 단계에서 높은 인식율을 확보할 수 있도록 빠른 연산속도와 추출 정확성을 높일 수 있는 알고리즘을 제안한다.

  • PDF

A Study on Car License Plate Extraction using ACL Algorithm (ACL 알고리즘을 이용한 자동차 번호판 영역 추출에 대한 연구)

  • Mun, Du-Yeoul;Lee, Yong-Hee;Jang, Seung-Ju
    • Journal of Navigation and Port Research
    • /
    • v.28 no.8
    • /
    • pp.727-733
    • /
    • 2004
  • In the car license plate recognition system, it is very important to extract the part of the license plate from the car image. In this paper, I use ACL algorithm to extract the license plate image from car image. The ACL algorithm is used to color and luminance information, either. Therefore in this paper, suggested algorithm is called ACL algorithm The ACL algorithm uses color, luminance information and the rate of license plate information Each of these information are used to exact area of license plate. The result of experiment to extract the car license plate with ACL algorithm is 97% extraction rate. The result of experiment with ACL algorithm for the character region, character recognition is 92% extraction rate.

Vehicle License Plate Recognition System on PDA for Illegal Parking Car Regulation (주정차 단속을 위한 PDA 기반의 자동차번호판 인식 시스템)

  • Yoon Hee-Joo;Cho Hoon;Koo Kyung-Mo;Cha Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.792-795
    • /
    • 2006
  • In this paper, we propose a method of vehicle license plate recognition on PDA for illegal parking car regulation. we classified three kinds of vehicle license plates being used down to date since the introduction of each vehicle license Plate using features of each one. And we recognized vehicle license plates segmentation the AreaName, the AreaCode, the TypeCharacter and the Numbers. A 88.7% recognition accuracy was obtained through the experiment of the proposed vehicle license plate recognition system using the obtained images of PDA.

  • PDF

Robust Motorbike License Plate Detection and Recognition using Image Warping based on YOLOv2 (YOLOv2 기반의 영상 워핑을 이용한 강인한 오토바이 번호판 검출 및 인식)

  • Dang, Xuan Truong;Kim, Eung Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.17-20
    • /
    • 2019
  • 번호판 자동인식 (ALPR: Automatic License Plate Recognition)은 지능형 교통시스템 및 비디오 감시 시스템 등 많은 응용 분야에서 필요한 기술이다. 대부분의 연구는 자동차를 대상으로 번호판 감지 및 인식을 연구하였고, 오토바이를 대상으로 번호판 감지 및 인식은 매우 적은 편이다. 자동차의 경우 번호판이 차량의 전방 또는 후방 중앙에 위치하며 번호판의 뒷배경은 주로 단색으로 덜 복잡한 편이다. 그러나 오토바이의 경우 킥 스탠드를 이용하여 세우기 때문에 주차할 때 오토바이는 다양한 각도로 기울어져 있으므로 번호판의 글자 및 숫자 인식하는 과정이 훨씬 더 복잡하다. 본 논문에서는 다양한 각도로 주차된 오토바이 데이트세트에 대하여 번호판의 문자 인식 정확도를 높이기 위하여 2-스테이지 YOLOv2 알고리즘을 사용하여 오토바이 영역을 선 검출 후 번호판 영역을 검지한다. 인식률을 높이기 위해 앵커박스의 사이즈와 개수를 오토바이 특성에 맞추어 조절하였다. 그 후 기울어진 번호판을 검출한 후 영상 워핑(Image Warping) 알고리즘을 적용하였다. 모의실험 결과, 기존 방식의 인식률이 47,74%에 비해 제안된 방식은 80.23%의 번호판의 인식률을 얻었다. 제안된 방법은 전체적으로 오토바이 번호판 특성에 맞는 앵커박스와 이미지 워핑을 통해서 다양한 기울기의 오토바이 번호판 문자 인식을 높일 수 있었다.

  • PDF

A Study on Character Segmentation in Car Plates (번호판에서의 문자 세그멘테이션에 관한 연구)

  • Lee, Sang-Hoon;Kim, Kyung-Hyun;Kim, Chun-Lin;Cha, Eui-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.623-626
    • /
    • 2003
  • 본 논문에서는 현재 자동차 번호판의 형식이 구 번호판과 신 번호판 두 가지 유형으로 구성되어 있다는 점을 고려하여 번호판의 세부적 세그멘테이션의 성능을 개선하는 방법에 대하여 제시한다. 컴퓨터 비젼을 바탕으로 한 자동차 번호판의 인식방법과 문자인식방법은 비용면이나 간편성에서 맡은 장점을 가지고 있으며 여러 응용분야에서 사용될 수 있기 때문에 다방면에서 시도되고 있다. 본 시스템은 모폴로지 연산과 클러스트링을 이용하여 자동차 번호판 전체 영역을 추출하는 방법을 사용한다. 다음으로 구번호판에서 신번호판으로 넘어가는 과도기적 단계에 있는 번호판들의 특징인 용도기능의 표시문자의 위치 차이를 이용하여 구 번호판과 신번호판을 먼저 분류한다. 분류된 번호판에서 두 번호판의 차이점인 차종기초 표시영역의 숫자를 나누어서 세그멘테이션함으로서 기존의 연구방법보다 개선된 세그멘테이션 능력과 이로 인하여 향상된 번호판 인식결과를 얻을 수 있다.

  • PDF

A Robust Real-Time License Plate Recognition System Using Anchor-Free Method and Convolutional Neural Network

  • Kim, Dae-Hoon;Kim, Do-Hyeon;Lee, Dong-Hoon;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.4
    • /
    • pp.19-26
    • /
    • 2022
  • With the recent development of intelligent transportation systems, car license plate recognition systems are being used in various fields. Such systems need to guarantee real-time performance to recognize the license plate of a driving car. Also, they should keep a high recognition rate even in problematic situations such as small license plates in low-resolution and unclear image due to distortion. In this paper, we propose a real-time car license plate recognition system that improved processing speed using object detection algorithm based on anchor-free method and text recognition algorithm based on Convolutional Neural Network(CNN). In addition, we used Spatial Transformer Network to increase the recognition rate on the low resolution or distorted images. We confirm that the proposed system is faster than previously existing car license plate recognition systems and maintains a high recognition rate in a variety of environment and quality images because the proposed system's recognition rate is 93.769% and the processing speed per image is about 0.006 seconds.

License Plate Region Letters Recognition using the Difference Image and Neural Network (차영상과 신경망을 이용한 자동차 번호판 지역 문자 인식)

  • Song, Yong-Jun;Kim, Dong-Woo;Kim, Young-Gil;Chang, Un-Dong;Kwon, Dong-Jin;Ahn, Jae-Hyeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.345-348
    • /
    • 2007
  • 자동차 번호판 인식은 카메라의 발달과 무인자동차 주차 시스템, 불법 주정차 단속 등 응용 서비스의 증가로 부각되고 있는 텔레매틱스 분야의 핵심 기술이다. 특히 우리나라의 번호판은 영업용과 비영업용의 도색이 틀리고, 현재 4종류의 번호판 체계를 갖고 있다. 따라서 번호판 인식은 이들 번호판을 종류별로 분류하고 인식해야 되는 어려움이 있다. 본 논문은 레이블링 기법으로 번호판 종류를 분류하고, 지역 글자 인식에서 뭉개짐 현상이 발생하는 경우, 기존의 신경망에서 인식치 못하는 것을 차영상과 신경망을 이용하여 인식률 향상을 이루었다.

Vehicle License Plate Recognition System using SSD-Mobilenet and ResNet for Mobile Device (SSD-Mobilenet과 ResNet을 이용한 모바일 기기용 자동차 번호판 인식시스템)

  • Kim, Woonki;Dehghan, Fatemeh;Cho, Seongwon
    • Smart Media Journal
    • /
    • v.9 no.2
    • /
    • pp.92-98
    • /
    • 2020
  • This paper proposes a vehicle license plate recognition system using light weight deep learning models without high-end server. The proposed license plate recognition system consists of 3 steps: [license plate detection]-[character area segmentation]-[character recognition]. SSD-Mobilenet was used for license plate detection, ResNet with localization was used for character area segmentation, ResNet was used for character recognition. Experiemnts using Samsung Galaxy S7 and LG Q9, accuracy showed 85.3% accuracy and around 1.1 second running time.