• Title/Summary/Keyword: 자동차 도어

Search Result 93, Processing Time 0.021 seconds

Study of Safety on Damage of Automotive Door at Impact (자동차 도어의 충돌 시 파손에 대한 안전성 연구)

  • Cho, Jae-Ung;Min, Byoung-Sang;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4677-4684
    • /
    • 2010
  • In this study, the safety of passenger could be investigated by the analysis of car body to absorb he shock onto automotive door. The damage at door happens because of the collision of automotive door or parking accident due to the carelessness of driver. This door was modelled by CATIA program. The damage process of this model by impact was analyzed and investigated through ANSYS program. The contours of equivalent stress and strain were obtained. It can be known how damage of door becomes under impact and this study result can be thought to contribute for the design of door considering impact safety.

Evaluation of volatile organic compounds emitted from door-trim armrest using micro chamber and 20 L static chamber (마이크로 챔버와 20 L static chamber를 이용한 도어트림 암레스트로부터 방출되는 휘발성 유기화합물 평가)

  • Lee, Ik-Hee;Yoo, Ji-Ho;Kim, Man-Goo
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.290-297
    • /
    • 2011
  • In present, evaluation method for car cabin air quality has been developed in ISO, China, Japan. Also The management standard for new produced car has been applied since 1, July, 2010. To manage car cabin air quality, It is important to evaluate VOC emitted from interior material. In this study, complete component of door trim armrest was evaluated in accordance with ISO 12219-5, cut component was evaluated in accordance with ISO 12219-3. The vapour gas was collected with stainless tube packed with Tenax TA and analyzed with TD-GC/MS. It was confirmed that emission rate of each compounds was difficult in each evaluation method. As a result, to evaluating each components composing door trim armrest, main sources of emitting VOCs in door trim armrest were PP substrate and adhesive.

The Study of Impact Energy Control of Door Trim Crash Absorption Using The TRIZ method (트리즈를 활용한 자동차 측면충돌의 도어트림 충격흡수부재의 충돌에너지 조절문제 해결에 관한 연구)

  • Jang, Ik-Kun;Jeon, O-Hwan;Kim, Ho-Jong;Huh, Jeong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.28-31
    • /
    • 2007
  • 자동차 측면충돌시 인체의 상해를 줄이기 위하여 도어 시스템 부품 중에 도어트림이 충격을 차단하고 인체를 보호하는 역할을 하고 있다. 차체 판넬이 변형되어 도어트림에 전달되는 충돌 에너지를 패드가 흡수 하는데 중대한 기능을 한다. 이전에 충격흡수 패드는 외곽부위의 수평면에 의존하여 설계되었으며 이 구조는 점진적으로 충격을 흡수 하는데 문제점이 발견 되었는데 트리즈의 6단계 창의성 기법을 적용하여 패드의 주요 특성을 찾아내고 그 특성에 모순을 해결하여 차종에 적용할 수 있는 기본 단면과 설계 자유도가 높은 충격흡수부재를 개발 하였다.

  • PDF

Structural Design of Door Assembly to Apply Tailor Welded Blanks Technique (합체박판 성형기법의 적용을 위한 자동차 도어의 구조 설계)

  • 황우석;이덕영;하명수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.228-233
    • /
    • 2002
  • TWB(Tailor Welded Blanks) is one of the recent techniques to reduce the weight and cost of the body members. To apply the TWB technique, we must decide the position of the welding line and the thickness of the welded blanks. Although many researchers have tried to check the formability of welded blanks, there are not so many researches from the structural point of view. In this paper, the TWB technique is applied to combine the door inner panel and the hinge face panel into one piece. The finite element structural analysis of the door assembly leads to the final design of the tailor welded door inner panel, which shows the mass reduction of 1.08kg without the sacrifice of the structural stiffness. The structural stiffness analysis includes the frame stiffness analysis, the belt line stiffness analysis, the door sagging analysis and the vibration analysis.

Automotive Door Impact Beam Development using Thermoplastic Composite (열가소성 복합재 적용 자동차 도어 임팩트 빔 개발)

  • Kim, Won-Seock;Kim, Kyung-Chul;Jung, Woo-Cheol;Kim, Hwa-nam
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.383-389
    • /
    • 2020
  • Thermoplastic composite is introduced to design an automotive door impact beam, and the manufacturing process is demonstrated. The safety regulation for vehicles has been steadily tightened, and weight-reduction has become a mandatory factor in the automotive industry. Hence, both high-performance and lightweight are demanded for automotive components. The aim of the present study is to develop an automotive door impact beam using fiber-reinforced thermoplastic composites to reduce the weight of the impact beam while increasing its mechanical performance. A new production method which combines continuous fiber-reinforced composite and LFT(Long Fiber-reinforced Thermoplastic) is implemented by using insert injection molding process. The mechanical performance of the composite impact beam was evaluated using 3-point bending tests. Thermoplastic composite will expand its application range to various automotive components due to its light-weight design capability and high productivity.

Door Effort Analysis for Hybrid Door Checker (하이브리드 도어 체커 개폐력 해석)

  • Kang, Sung-Jong;Kim, Dong-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.52-57
    • /
    • 2012
  • Proper door effort is required for the safety of passenger and pedestrian while securing door operating convenience. 3D finite element analyses for a hybrid door checker were carried out to estimate door checker arm resistance force. And, from the estimated door checker arm resistance force and theoretically calculated self-closing force, door effort was predicted. The analysis results at checker arm peaks showed excellent correlation with the test results. Also, in order to reduce solving time, a modified model with simple spring element was investigated. Finally an equation to easily calculate checker arm resistance force from checker arm shape and spring constant was suggested and its usefulness in early design stage was discussed.

Numerical Study on Performance Evaluation of Impact Beam for Automotive Side-Door using Fiber Metal Laminate (자동차 측면 도어의 섬유금속적층판을 적용한 임펙트 빔의 수치해석에 의한 성능 평가)

  • Park, Eu-Tteum;Kim, Jeong;Kang, Beom-Soo;Song, Woo-Jin
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.158-164
    • /
    • 2017
  • The fiber metal laminate is a type of hybrid materials laminated thin metallic sheets with fiber reinforced plastic sheets. The laminate has been researched or applied in automotive and aerospace industries due to their outstanding impact absorbing performance in view of light weight aspect. Specially, the replacement of side-impact beam as the fiber reinforced plastic has been researched actively. The objective of this paper is the primitive investigation in the development of side-door impact beam using the fiber metal laminate. First, the three-point bending simulations were conducted to decide the shape of impact beam using the numerical analysis. Next, two cases impact beam (pure DP 980 and fiber metal laminate) were installed in the side-door, and then the bending tests (according to FMVSS 214S) were simulated using the numerical analysis. It is noted that the side-door impact beam can be replaced with the fiber metal laminate sufficiently based on the numerical analysis results.

Development of the Kinematic and Dynamic Analysis Program for the Design of the Folding Door Mechanism (폴딩 도어 메커니즘 설계를 위한 기구학 및 동역학 해석 프로그램 개발)

  • 서명원;권성진;심문보;조기용;이은표;박승영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.187-193
    • /
    • 2002
  • Since the bus is regarded as the one of the most public transportation systems, research on the safety and facilities of the bus has been increased actively in recent years. In this paper, we concern the design of the bus door mechanism that is composed of many linkages and actuators(or motors). In particular, the folding door mechanism is representative system installed in most of urban buses. To design the folding door mechanism, we construct the kinematic and dynamic analysis model fur computer simulation. Also, the dynamic analysis is accomplished by both direct dynamics and inverse dynamics. Since the folding door mechanism has many design variables, the analysis program is developed to perceive kinematic and dynamic characteristics according to the design variables and simulation conditions.

Structural Design of an Automotive Door Using the Kriging Models (크리깅모델을 이용한 자동차 도어의 구조설계)

  • Lee, Kwon-Hee;Bang, Il-Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.146-153
    • /
    • 2007
  • Weight reduction for automobile components has been sought to achieve fuel efficiency and energy conservation. There are two approaches in reducing their weights. One is by using material lighter than steel, and the other is by redesigning their structures. The latter has been performed by adopting hydroforming, tailor weled blank, optimization, etc. In this research, the kriging approximation method and simulated annealing algorithm are applied to the design of a front door made by TWB (Tailor Welded Blank) technology. The design variables are set up as the thicknesses of parts and the positions of parting lines. A thickness set considered as a design variable of each part is not arbitrarily determined but selected from standard products, so it is a discrete set. This research presents the discrete and continuous structural optimization method for an automotive door design.

Process Design of Trimming to Improve the Sheared-Edge of the Vehicle Door Latch based on the FE Simulation and the Taguchi Method (유한요소해석 및 다구찌법을 이용한 자동차 도어 래치의 전단면 품질 향상을 위한 트리밍 공정 설계)

  • Lee, Jung-Hyun;Lee, Kyung-Hun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.483-490
    • /
    • 2016
  • Automobile door latch is a fine design and assembly techniques are required in order to produce them in a small component assembly shape such as a spring, injection products, a small-sized motor. The door latch is fixed to not open the door of the car plays an important role it has a direct impact on the driver's safety. In this study, during trimming of the terminals of the connector main components of the car door latch, reduce rollover and conducted a research to find a suitable effective shear surface. Using the Taguchi method with orthogonal array of Finite Element Analysis and optimal Design of Experiments were set up parameters for the shear surface quality of the car door latch connector terminals. The design parameters used in the analysis is the clearance, the radius, and the blank holding force, the material of the connector terminal is a C2600. Trimming process optimum conditions suggested by the analysis has been verified by experiments, the shear surface shape and dimensions of a final product in good agreement with forming analysis results.Taguchi method from the above results in the optimization for the final rollover and effective shear surface improved for a vehicle door latch to the connector terminal can be seen that the applicable and useful for a variety of metal forming processes other than the trimming process is determined to be applicable.