• Title/Summary/Keyword: 자동차도어

Search Result 94, Processing Time 0.025 seconds

Development of a Car Door Checker for Reducing Noise in Opening (승용차 도어의 개폐 이음 저감을 위한 도어체커 개발)

  • An, Byeongju;Son, Sungmin;Yun, Jaedeuk;Jung, Yoongho;Kim, Hyongdon;Shin, Jongil;Seo, Seungwoo;Jang, Kookjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.396-401
    • /
    • 2015
  • A door checker holds a car door at several opening angles and limits the maximum door opening, so that the door does not bump against to passengers. Recently, the performance of door checker becomes more important as the feeling of door opening and closing effects on the quality of a car. However, some of door checkers make squealing noise when they are used for ages, which causes consumer's complaints as well as decreasing commercial value of the product. In this study, after various experiments for the noise, we concluded that the major reasons of the noise are acceleration of wearing and loss of lubricant due to impurities in working parts. Therefore, we developed a new mechanism of door checker which can resolve the major reasons of the noise. The developed mechanism is effective to prevent inflow of impurities and loss of lubricant by locating working parts in the case. We also proved that the developed mechanism does not make any noise after the test of 50,000 times of operations.

An Economic Effect Analysis on Remanufacturing Part of Automobile (자동차부품 재제조에 따른 품목별 경제성 효과 분석 연구)

  • Ko, Kwang-Hoon;Bae, Yun-Jung;Moon, Jin-Young;Kang, Hong-Yoon;Hwang, Yong-Woo
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.37-43
    • /
    • 2019
  • Due to environment problems in end of Life Vehicle in the country, the interest in remanufacturing is heightened than ever. In this study, it is important to quantitatively evaluate the economic effect of the introduction of the automotive remanufacturing business and analyzed cost-benefit for the three species of bumpers, doors, fenders, which is relatively lower remanufactured automotive component. The results showed that cost-beneift of each parts were analyzed 54,000 per one part, and if remanufacturing were 50%, benefits were to occur with a profit of 226,060 won. Thus, remanufacturing of bumpers, doors, fender resulted a significant benefit, and then it is possible that remanufacturing company have enough economic value for remanufacturing.

Optimization of Valve Gates Locations Using Automated Runner System Modeling and Metamodels (유동 안내부 모델링 자동화 및 근사모델을 이용한 자동차용 도어트림의 밸브 게이트 위치 최적화)

  • Joe, Yong-Su;Park, Chang-Hyun;Pyo, Byung-Gi;Rhee, Byung-Ohk;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.115-122
    • /
    • 2014
  • Injection pressure is one of factors that influence part quality. In this paper, injection pressure was minimized by optimizing valve gate locations. In order to perform design optimization, MAPS-3DTM (Mold Analysis and Plastic Solution-3D) was used for injection mold analysis and PIAnOTM (Process Integration, Automation and Optimization) was used as process integration and design optimization. Also we adapted meta models based on design of experiments for efficiency. By using introduced methodology, we were able to obtain a result so that maximum injection pressure reduced by 28% compared to the initial design. And the validity of the proposed method could also be demonstrated.

Shape Design of Hinge Stopper to Improve Refrigerator Door Opening Force (냉장고 도어 개방력 개선을 위한 힌지 스토퍼의 형상설계)

  • Seo, Ji-Hwan;Lee, Sanghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.66-71
    • /
    • 2021
  • In this study, the shape design optimization of a refrigerator door hinge stopper was performed to reduce the discrepancy in the opening forces of the left and right doors of a double-door refrigerator. A finite element model was constructed and analyzed by quasi-static analyses to evaluate the structural performance of the door hinge stopper. The reaction moment calculated at the hinge axis was used as a measure of the door opening and closing forces. The design objective is to increase the door opening force by 50% while maintaining the door closing force and the maximum stress calculated in the body of the hinge stopper at the current level. A new design concept with a contacting slot was proposed to decouple the door closing and opening forces. Shape optimization was performed to determine the dimensions of the new design of the hinge stopper, and the rib pattern was determined by topological optimization to further increase the door opening force. It was observed that the new design met all design requirements.

Experimental Evaluation of Buzz, Squeak and Rattle Noise of Vehicle Doors and Its Prevention (자동차 도어의 BSR 소음의 실험적 평가와 개선)

  • Shin, Su-Hyun;Cheong, Cheol-Ung;Jung, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.617-621
    • /
    • 2007
  • Recent advances in automotive noise control engineering have reduced major sound sources in the vehicle, customers perceive Buzz, Squeak and Rattle (BSR) as one of important indicators of vehicle quality and durability. As the long-term goal, we expect to establish the integrated design cycle for the reduction of BSR noise in the early stage of development, which consist of design, prediction, and evaluation procedures. This is possible only with great bulk of experimental data for BSR noise. In this paper, BSR noise is experimentally identified for vehicle doors, which have been traditionally considered as one of main sources of BSR noise. Based on this result, we proposed method for the prevention of BSR noise in the vehicle doors.

  • PDF

Structural Analysis on Door Hinge of Car (자동차 도어 힌지의 구조해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.2
    • /
    • pp.33-39
    • /
    • 2010
  • The thickness of original hinge model is changed for structural stability in this study. The front end with the largest deformation of 9.8813 mm or the rear middle part with the largest equivalent stress of 6082.6 MPa is respectively shown at door hinge. The lower part of joint pin head with the largest deformation of 0.17499 mm and the largest equivalent stress of 1540.2 MPa are shown. The advanced model with more thickness and stability is shown to have smaller displacement in half and smaller equivalent stress by 3 times by comparing with the original model.

Structural Analysis According to the Configuration of Door Impact Bar (도어 충격봉의 형상에 따른 구조 해석)

  • Cho, Jae-Ung;Kim, Yong-Gyeom;Kim, Sei-Hwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.608-610
    • /
    • 2011
  • 본 논문에서는 자동차의 도어의 충격봉의 형상에 따른 변형률과 최대응력을 ANSYS Workbench환경을 이용해 원형, 반원형, 모자형 개단면, 정사각형 등의 단면 형상에 따른 변형량 특성을 측정해 본 결과 변형률은 모자형 개단면 모델이 가장 적은 변형률을 가지는 것으로 나왔으며, 무게가 30%정도 적게 나가는 반원형도 두 번째로 적은 변형률을 가지는 것으로 나타났다. 최대응력의 경우는 반원형이 가장 적은 최대응력 값을 가지는 것으로 나왔고, 변형률과는 다르게 중심부 보다는 충격봉과 프레임의 연결부위에서 최대응력이 발생하는 것을 알 수 있었다. 이를 통해서 충격봉의 중심부는 변형률 및 응력이 다른 부분에 비해서 크게 작용하므로, 중앙부위의 단면계수가 높아야 한다.

  • PDF

Development of Vehicle Door Impact Beam by Hot Stamping (핫스탬핑에 의한 자동차 도어 임팩트빔의 개발)

  • Yum, Young-Jin;Kim, Jong-Gook;Lee, Hyun-Woo;Hwang, Jung-Bok;Kim, Sun-Ung;Kim, Won-Hyuck;Yoo, Seung-Jo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.7-12
    • /
    • 2008
  • A hot stamping technology of vehicle door impact beam made of thin sheet steel has been developed, with the aim of ensuring occupant safety in a side collision. This technology has been implemented to increase the strength of vehicle body parts and to reduce not only the weight of door impact beam but also the number of work processes. Mechanical tests were performed to obtain material properties of hot-stamped specimen and those were used as input data in stamping and structural simulation for optimal design of door impact beam. Strength of hot-stamped door impact beam increased to the value 102% higher than that of conventional pipe-shaped door impact beam and structural simulation showed that hot-stamped door impact beam achieved 28% weight reduction.

  • PDF