• Title/Summary/Keyword: 자동정보 추출

Search Result 1,995, Processing Time 0.043 seconds

Learning-based Automatic Keyphrase Indexing from Korean Scientific LIS Articles (자동색인을 위한 학습기반 주요 단어(핵심어) 추출에 관한 연구)

  • Kim, Hea-Jin;Jeoung, Yoo-Kyung
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2017.08a
    • /
    • pp.15-18
    • /
    • 2017
  • 학술 데이터베이스를 통해 방대한 양의 텍스트 데이터에 대한 접근이 가능해지면서, 많은 데이터로부터 중요한 정보를 자동으로 추출하는 것에 대한 필요성 또한 증가하였다. 특히, 텍스트 데이터로부터 중요한 단어나 단어구를 선별하여 자동으로 추출하는 기법은 자료의 효과적인 관리와 정보검색 등 다양한 응용분야에 적용될 수 있는 핵심적인 기술임에도, 한글 텍스트를 대상으로 한 연구는 많이 이루어지지 않고 있다. 기존의 한글 텍스트를 대상으로 한 핵심어 또는 핵심어구 추출 연구들은 단어의 빈도나 동시출현 빈도, 이를 변형한 단어 가중치 등에 근거하여 핵심어(구)를 식별하는 수준에 그쳐있다. 이에 본 연구는 한글 학술논문의 초록으로부터 추출한 다양한 자질 요소들을 학습하여 핵심어(구)를 추출하는 모델을 제안하였고 그 성능을 평가하였다.

  • PDF

Automatic extraction of golf swing features using a single Kinect (단일 키넥트를 이용한 골프 스윙 특징의 자동 추출)

  • Kim, Pyeoung-Kee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.197-207
    • /
    • 2014
  • In this paper, I propose an automatic extraction method of golf swing features using a practical TOF camera Kinect. I extracted 7 key swing frames and features using joints and depth information from a Kinect. I tested the proposed method on 50 swings from 10 players and showed the performace. It is meaningful that 3D swing features are extracted automatically using an inexpensive and simple system and specific numerical feature values can be used for the building of automatic swing analysis system.

Extracting Comparative Elements from Comparative Sentences (비교 문장으로부터 비교 요소 자동 추출)

  • Yang, Seon;Ko, Young-Joong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.225-228
    • /
    • 2011
  • 본 논문은 비교 마이닝(comparison mining) 의 일환인 비교 요소 자동 추출에 관하여 연구한다. 비교 마이닝은 텍스트 마이닝의 한 분야로서 대용량의 텍스트를 대상으로 비교 관계롤 자동 분석하며, 비교 문장인지 아닌지를 식별하는 단계, 비교 타입을 분류하는 단계, 다양한 비교 요소들을 추출하는 단계, 추출된 요소를 분석 및 요약하는 단계 등을 거치게 된다. 본 연구에서는 특정 타입의 비교 문장이 주어졌을때, 그 문장에서 비교 요소를 자동으로 추출하는 단계의 과제를 수행하며, 우열 비교 타입 및 최상급 타입 문장들을 대상으로 비교 주체, 비교 대상, 비교 술어를 추출한다. 실험 과정으로는, 우선 비교 요소 후보들을 선정하고, 그 후 각 요소별로 확률을 계산하여 가장 높은 수치를 기록한 요소를 정답으로 채택하게 된다. 확률 계산은 지지 벡터 기계 (Support Vector Machine)를 이용한다. 인터넷 상의 다양한 도메인에서 추출된 비교 문장들을 대상으로 비교 요소 추출을 수출한 결과, 정확도 86.81 %의 우수한 성능을 산출 할 수 있었다.

Automatic Extraction of protein-protein interaction information from biological literature (생물학 관련 문헌으로부터 상호작용 정보 자동 추출)

  • 정의헌;김민경;박현석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.808-810
    • /
    • 2003
  • 본 논문에서는 생물학 관련 문서에서 단백질 간의 상호작용을 추출하는 방법에 대한 전반적인 기술 동향을 소개하고, 현재 구현된 상호작용 정보 자동추출 시스템의 연구 결과에 대해 기술한다. 일반적으로 이미 알려진 단백질들의 관계를 추출함에 있어서는 단백질의 이름에 대한 특성 구분과 표현의 의미적 해석등에 NLP 기법을 사용하여, 사용자 정의에 따른 룰을 생성하는 방법과 데이터 마이닝 기법을 적용하여, 단백질간의 관계를 자동적으로 추출하는 방법, 또한 위의 이 두가지 방법을 병행하는 방법이 현재 연구되고 있다. 이 논문에서는 자연언어처리 기법과 머신러닝 기법(SVM)을 이용하여, 단백질간의 상호작용에 관한 일반 생물 정보 문헌에서 추출하고, 그 성능을 테스트 해 보겠다.

  • PDF

Study on optimal image processing and identifying threshold values for automatic extraction of the damaged areas (피해지역 자동추출을 위한 공간영상 피해 항목별 최적 영상처리 및 임계치 결정에 관한 연구)

  • Seo, Jung-Taek;Kim, Kye-Hyun;Nam, Gi-Beom;Kim, Tae-Hoon
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.121-127
    • /
    • 2010
  • 본 연구에서는 피해 전 후 고해상도 항공영상을 이용하여 풍수해 피해정보를 자동 추출하는데 있어 결과물의 신뢰성 제고 방안에 대해 연구하였다. 연구 대상지역은 2008년 집중호우로 인해 큰 피해를 입은 경상북도 봉화지역을 선정하였으며, 해당 지역 중 특히 피해가 집중된 서벽리, 애당리 지역에 대하여 피해 전 후 영상을 확보하고 자동탐지를 수행하였다. 피해 지역의 자동탐지 수행 전 Normalizing, 대비강조, Equalizing 등의 영상처리를 수행하고, 자동추출 결과의 정확도를 비교하여 피해항목별 최적의 영상처리를 결정하였다. 최적의 영상처리가 적용된 영상에 대하여 피해 항목별 피해형태를 파악하였으며, 가장 정확한 결과물이 추출되는 최적의 임계치를 결정하였다. 도로 항목의 경우 Normalizing 영상처리를 수행하고 임계치를 120으로 부여하여 자동탐지를 수행한 경우 가장 정확한 추출 결과가 나타났으며, 농경지 항목의 경우 대비강조 영상처리와 임계치가 100으로 부여된 경우 피해 지역의 추출이 가장 정확하게 나타났다. 본 연구결과는 향후 유사한 재해 발생 시 초기 신속한 피해규모 산출이 가능하게 하여 적절한 후속 조치를 취할 수 있도록 한다. 또한, 다중밴드 피해 전 후 영상 확보가 가능할 경우 추가적인 피해 항목의 최적 영상처리와 임계치 결정이 가능해지며, 토지피복 분류를 거쳐 피해지역 자동탐지 수행 시 원하는 피해항목만을 선택적으로 추출하는 것도 가능할 것으로 판단된다.

  • PDF

Text Categorization Features Automatic Extraction Method Using Chi-squared Statistic (카이제곱 통계량을 이용한 문서분류 자질 자동추출 방법)

  • Park, Jong-Hyun;Park, So-Young;Chang, Ju-No;Kihl, Tae-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.695-697
    • /
    • 2010
  • 문서에 포함되는 어휘는 문서 분류의 정보를 가지므로 문서를 분석하여 유용한 단어를 추출하는 것은 다양한 서비스와 연계되어 사용될 수 있어 매우 유용한 일이다. 문서 자동 분류에서는 분류자질 선정 방식에 따라 분류정확도가 서로 달라질 수 있으며, 문서에서 추출되는 유용한 단어에 따라 인지되는 분야가 달라질 수 있다. 이에 본 논문에서는 각 문서에 포함되는 단어에 대한 카이제곱 통계량 점수를 사용하여 단어별 문서 분류에 대한 단어의 자질을 평가하고 문서의 분류별 유용한 단어를 자동 추출하는 방법을 제안하고 개발한다.

  • PDF

Automatic Cracks Detection System of Concrete Buildings Using Image Processing (영상 처리를 이용한 건축물의 크랙 자동 검출 시스템)

  • Cho, Dong-Uk;Yoon, Mi-Hee
    • Annual Conference of KIPS
    • /
    • 2002.04a
    • /
    • pp.759-762
    • /
    • 2002
  • 본 논문에서는 건축물의 안전 진단에 최우선 요소로 고려되는 크랙(Crack : 갈라진 틈)을 영상 처리에 의해 자동 검출하고 크랙의 여러 가지 특징들을 자동으로 추출하는 방법에 대해 제안하고자 한다. 이는 우선 카메라로 입력한 건축불의 영상에서 전처리과정을 통해 잡음제거를 행하고 이에 경계 추출과 세선화 과정을 통해 크랙의 영역을 검출한다. 이후 크랙들의 특징을 추출하기 위해 크랙들을 분할하며 분할된 크랙들에 대해 곡선 적합을 통해 크랙들의 방향과 길이 등과 같은 특징들을 추출해 낸다. 본 논문에서 개발코자 하는 시스템은 크랙들의 특징들을 자동으로 추출해 냄으로써 기초적인 건축물의 안전 진단을 자동으로 행하는 시스템이 되리라 여겨진다.

  • PDF

Automatic Classification of Patent Documents Using Doc2Vec (Doc2Vec을 이용한 특허 문서 자동 분류)

  • Song, Jinjoo;Kang, Seung-Shik
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.239-241
    • /
    • 2019
  • 지식과 정보의 중요성이 강조되는 지식기반사회에서는 지식재산권의 대표적인 유형인 특허의 중요성이 날로 높아지고 있고, 그 수 또한 급증하고 있다. 특허 문서의 효과적 검색과 이용을 위해서는 새롭게 출원되는 특허 문서의 체계적인 분류 작업이 선행되어야 하고, 따라서 방대한 양의 특허 문서를 자동으로 분류해주는 시스템이 필요하다. 본 연구에서는 Doc2Vec 모델을 이용하여 국내 특허 문서의 특징(feature)을 추출하고, 추출된 특징을 바탕으로 한 특허 문서의 자동 분류 모형을 제안한다. 먼저 국내에 등록된 31,495 건의 특허 문서의 IPC(International Patent Classification)와 요약정보를 바탕으로 Doc2Vec 모델을 구축하였다. 구축된 Doc2Vec 모델을 통하여 훈련데이터의 특징을 추출한 후, 이 특징 벡터를 이용하여 분류기를 학습하였다. 마지막으로 Doc2Vec 모델을 이용하여 실험데이터의 특징 벡터를 추출하고 분류기의 성능을 실험한 결과, 43%의 분류 정확도를 얻었다. 이를 통해, 특허 문서 분류 문제에 Doc2Vec 모델의 사용 가능성을 확인할 수 있었다.

A Study on the Automatic Extraction of Fomulation and Properties in Chemical Field Patent Document by Using Machine Learning Technology (기계학습 기술을 활용한 화학분야 특허문서의 조성/물성 정보 자동추출 방법 연구)

  • Kim, Hongki;Lee, Hayoung;Park, Jinwoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.277-280
    • /
    • 2019
  • 본 논문에서는 화학분야 특허 문서에 존재하는 도표(TABLE) 데이터를 인공지능 기술을 활용하여 자동으로 추출하고 정형화된 형태로 가공하는 방법을 제안한다. 특허 문서에서 도표 데이터는 실시예에서 실험결과나 비교결과를 간결하고 가시적으로 표현하기 위하여 주로 사용되나, 셀의 속성을 정의하는 헤더부분과 수치가 표현되는 값 부분의 경계가 모호하여 구조화하는데 어려움이 있다. 본 논문에서 제안하는 방법은 소량의 학습데이터를 구축하고 기계학습을 통해 도표에 존재하는 셀의 속성을 예측하고, 예측된 속성을 토대로 조성과 물성 정보를 자동으로 구분하여 추출하는 방법을 제시한다. 제시된 방법을 활용하여 화학 분야 조성물 특허의 도표데이터에 시뮬레이션 결과 각 항목별 98.17%의 속성 예측 정확도를 나타내었으며 기존 규칙기반 연구보다 작업난이도, 예측정확도에서 우수한 성과를 보인다.

  • PDF

Automatic Photography Shooting using Hand Gesture Recognition (손동작 인식 기능을 이용한 자동 사진 촬영)

  • Han, Min-Su;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.173-175
    • /
    • 2012
  • 본 논문에서는 스마트폰 카메라를 이용하여 실제 사진 촬영에서 많이 사용되는 손동작들을 인식하고 자동으로 사진을 촬영하는 방법을 제안한다. 제안된 방법은 스마트폰 카메라로부터 획득한 영상에서 피부색의 특징이 잘 나타나는 YCbCr 컬러 공간의 스킨 컬러 정보 값을 기반으로 피부 영역을 추출한다. 추출된 피부 영역에서 Labeling 기법을 적용하여 Contour 정보를 분석한 후, 피부 객체를 추출한다. 추출된 피부 객체에서 손가락의 위치 정보를 이용하여 손 영역을 추출한 후에 손동작을 인식하고, 손동작을 인식한 카메라가 자동으로 사진을 촬영한다. 제안된 방법은 저 사양의 환경에서 손동작을 인식하는 속도가 빠르고, 기존 스마트폰 카메라의 타이머 기능보다 효율적으로 사용이 가능한 것을 실험을 통하여 확인하였다.

  • PDF