• Title/Summary/Keyword: 자동정보 추출

Search Result 1,995, Processing Time 0.03 seconds

Intelligent Vocabulary Recommendation Agent for Educational Mobile Augmented Reality Games (교육용 모바일 증강현실 게임을 위한 지능형 어휘 추천 에이전트)

  • Kim, Jin-Il
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.2
    • /
    • pp.108-114
    • /
    • 2019
  • In this paper, we propose an intelligent vocabulary recommendation agent that automatically provides vocabulary corresponding to game-based learners' needs and requirements in the mobile education augmented reality game environment. The proposed agent reflects the characteristics of mobile technology and augmented reality technology as much as possible. In addition, this agent includes a vocabulary reasoning module, a single game vocabulary recommendation module, a battle game vocabulary recommendation module, a learning vocabulary list Module, and a thesaurus module. As a result, game-based learners' are generally satisfied. The precision of context vocabulary reasoning and thesaurus is 4.01 and 4.11, respectively, which shows that vocabulary related to situation of game-based learner is extracted. However, In the case of satisfaction, battle game vocabulary(3.86) is relatively low compared to single game vocabulary(3.94) because it recommends vocabulary that can be used jointly among recommendation vocabulary of individual learners.

Classification of Trucks using Convolutional Neural Network (합성곱 신경망을 사용한 화물차의 차종분류)

  • Lee, Dong-Gyu
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.6
    • /
    • pp.375-380
    • /
    • 2018
  • This paper proposes a classification method using the Convolutional Neural Network(CNN) which can obtain the type of trucks from the input image without the feature extraction step. To automatically classify vehicle images according to the type of truck cargo box, the top view images of the vehicle are used as input image and we design the structure of the CNN suitable for the input images. Learning images and correct output results is generated and the weights of neural network are obtained through the learning process. The actual image is input to the CNN and the output of the CNN is calculated. The classification performance is evaluated through comparison CNN output with actual vehicle types. Experimental results show that vehicle images could be classified with more than 90 percent accuracy according to the type of cargo box and this method can be used for pre-classification for inspecting loading defect.

Development of Radar-Satellite Blended QPF Technique to Rainfall Forecasting : Extreme heavy rainfall case in Busan, South Korea (레이더-위성 결합 초단기 강우예측 기법 개발: 부산 호우사례 적용 (2014년 8월 25일))

  • Jang, Sang Min;Yoon, Sun Kwon;Park, Kyung Won;Yhang, Yoo Bin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.226-226
    • /
    • 2016
  • 최근 이상기상현상과 기후변화로 인하여 국지적인 집중호우의 빈도 및 규모가 증가하고 있으며, 이로 인한 돌발 홍수피해가 증가하고 있다. 이러한 홍수 피해를 줄이기 위해서는 정확도가 우수한 초단시간(1~2시간 이내) 예측 강우량 정보가 필요하다. 본 연구에서는 집중호우에 대한 초단시간예보 및 실황 예측을 위해 시공간적으로 고해상도 자료를 제공할 수 있는 기상레이더 강우자료와 위성영상 자료를 결합하여 초단기 강수 예측기법 개발 연구를 수행하였다. 또한 기상레이더 강우량은 지상강우관측에 비해 정확성이 낮고, 많은 불확실성을 포함하고 있으므로, 위성영상에서 산출되는 강우자료와 결합하여 강우추정의 정확도를 개선하고자 하였다. 레이더 볼륨자료에서 반사도 자료를 추출하여, 1.5km CAPPI(Constant Altitude Plan Position Indicator) 자료를 생성하고, 반사도 CAPPI 자료의 패턴 상관분석을 통하여 강우시스템의 최적 이동벡터를 산출하였다. 또한 이동벡터를 고려하여 시공간적으로 외삽하여 강우이동 예측 모델을 개발하고, 초기자료로 레이더와 천리안 위성(Communication, Ocean and Meteorological Satellite, COMS) 영상자료에서 생성되는 강우자료를 결합한 강수장 자료를 이용하여 강수 예측장을 생성하였다. 레이더-위성 결합 초단기 강우예측 모델의 정확성 검증을 위하여 2014년 8월 25일 부산 및 영남 지역에 발생한 집중호우 사례에 대하여 지상기상자동관측시스템(Automatic Weather System, AWS) 강우 측정 결과를 비교 분석 하였으며, 그 적용 가능성을 검증하였다. 초단기 강우예측 분석 결과 지상강우자료와의 오차가 발생하나, 추후 여러 통계적 후처리 과정을 통하여 그 성능이 개선될 것으로 보이며, 보다 정확한 강우량 예측을 위해서는 지속적인 알고리즘 개선 및 모형의 검 보정이 필요할 것으로 사료된다.

  • PDF

A Named Entity Recognition Model in Criminal Investigation Domain using Pretrained Language Model (사전학습 언어모델을 활용한 범죄수사 도메인 개체명 인식)

  • Kim, Hee-Dou;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.13-20
    • /
    • 2022
  • This study is to develop a named entity recognition model specialized in criminal investigation domains using deep learning techniques. Through this study, we propose a system that can contribute to analysis of crime for prevention and investigation using data analysis techniques in the future by automatically extracting and categorizing crime-related information from text-based data such as criminal judgments and investigation documents. For this study, the criminal investigation domain text was collected and the required entity name was newly defined from the perspective of criminal analysis. In addition, the proposed model applying KoELECTRA, a pre-trained language model that has recently shown high performance in natural language processing, shows performance of micro average(referred to as micro avg) F1-score 98% and macro average(referred to as macro avg) F1-score 95% in 9 main categories of crime domain NER experiment data, and micro avg F1-score 98% and macro avg F1-score 62% in 56 sub categories. The proposed model is analyzed from the perspective of future improvement and utilization.

Unsupervised Classification of Landsat-8 OLI Satellite Imagery Based on Iterative Spectral Mixture Model (자동화된 훈련 자료를 활용한 Landsat-8 OLI 위성영상의 반복적 분광혼합모델 기반 무감독 분류)

  • Choi, Jae Wan;Noh, Sin Taek;Choi, Seok Keun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.53-61
    • /
    • 2014
  • Landsat OLI satellite imagery can be applied to various remote sensing applications, such as generation of land cover map, urban area analysis, extraction of vegetation index and change detection, because it includes various multispectral bands. In addition, land cover map is an important information to monitor and analyze land cover using GIS. In this paper, land cover map is generated by using Landsat OLI and existing land cover map. First, training dataset is obtained using correlation between existing land cover map and unsupervised classification result by K-means, automatically. And then, spectral signatures corresponding to each class are determined based on training data. Finally, abundance map and land cover map are generated by using iterative spectral mixture model. The experiment is accomplished by Landsat OLI of Cheongju area. It shows that result by our method can produce land cover map without manual training dataset, compared to existing land cover map and result by supervised classification result by SVM, quantitatively and visually.

Implementation of the Automated De-Obfuscation Tool to Restore Working Executable (실행 파일 형태로 복원하기 위한 Themida 자동 역난독화 도구 구현)

  • Kang, You-jin;Park, Moon Chan;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.4
    • /
    • pp.785-802
    • /
    • 2017
  • As cyber threats using malicious code continue to increase, many security and vaccine companies are putting a lot of effort into analysis and detection of malicious codes. However, obfuscation techniques that make software analysis more difficult are applied to malicious codes, making it difficult to respond quickly to malicious codes. In particular, commercial obfuscation tools can quickly and easily generate new variants of malicious codes so that malicious code analysts can not respond to them. In order for analysts to quickly analyze the actual malicious behavior of the new variants, reverse obfuscation(=de-obfuscation) is needed to disable obfuscation. In this paper, general analysis methodology is proposed to de-obfuscate the software used by a commercial obfuscation tool, Themida. First, We describe operation principle of Themida by analyzing obfuscated executable file using Themida. Next, We extract original code and data information of executable from obfuscated executable using Pintool, DBI(Dynamic Binary Instrumentation) framework, and explain the implementation results of automated analysis tool which can deobfuscate to original executable using the extracted original code and data information. Finally, We evaluate the performance of our automated analysis tool by comparing the original executable with the de-obfuscated executable.

Distance Measurement of Small Moving Object using Infrared Stereo Camera (적외선 스테레오 카메라를 이용한 소형 이동체의 거리 측정)

  • Oh, Jun-Ho;Lee, Sang-Hwa;Lee, Boo-Hwan;Park, Jong-Il
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.53-61
    • /
    • 2012
  • This paper proposes a real-time distance measurement system of high temperature and high speed target using infrared stereo camera. We construct an infrared stereo camera system that measure the difference between target and background temperatures for automatic target measurement. First, the proposed method detects target region based on target motion and intensity variation of local region using difference between target and background temperatures. Second, stereo matching by left and right target information is used to estimate disparity about real-time distance of target. In the proposed method using infrared stereo camera system, we compare distances in three dimension trajectory measuring instrument and in infrared stereo camera measurement. In this experiment from three video data, the result shows an average 9.68% distance error rate. The proposed method is suitable for distance and position measurement of varied targets using infrared stereo system.

Implementation of an Effective Educational Community Service System by using Metadata and Category (MetaData와 Category를 이용한 효과적인 교육용 커뮤니티 서비스 시스템(ECSS) 구현)

  • Yoon, Sun-Jung;Kim, Mi-Jin;Kim, Chee-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.10
    • /
    • pp.1332-1343
    • /
    • 2006
  • This paper proposes an educational community service system that manages information of good quality intensively without overlapping, and that provides an effective searching function by using a personal community with many user layers. This system raises the efficiency of searching and management by using Metadata and Category. It is a self-leading educational community system that brings merits into relief and improves weak points. We constructed an autogenous Blog chain service as a tool which verifies this system, which is called 'EduLOG(Educational Blog) service' Especially we extracted Metadata suitable for this service, which is on the basis of worldfamous Dublin Core Metadata. And we made a new category on the basis of categories which were proposed by some educational community sites and public educational authorities, and we applied it to this system. To ascertain whether this service system provide adequate function or not, we made a questionnaire on the basis of the appraisal table in websites, and evaluated it at the request of experts. In view of the results so far achieved, it returned good scores (above 3.5/5.0) in accuracy of evaluation, low-end reappearance ratio, easiness of registering and approaching information, and intensive management of a categorical information, confirming the efficiency of the ECSS system. Therefore we believe firmly that the ECSS system will play a efficient information storing and searching roles in the near future.

  • PDF

Animation Generation for Chinese Character Learning on Mobile Devices (모바일 한자 학습 애니메이션 생성)

  • Koo, Sang-Ok;Jang, Hyun-Gyu;Jung, Soon-Ki
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.12
    • /
    • pp.894-906
    • /
    • 2006
  • There are many difficulties to develop a mobile contents due to many constraints on mobile environments. It is difficult to make a good mobile contents with only visual reduction of existing contents on wire Internet. Therefore, it is essential to devise the data representation and to develop the authoring tool to meet the needs of the mobile contents market. We suggest the compact mobile contents to learn Chinese characters and developed its authoring tool. The animation which our system produces is realistic as if someone writes letters with pen or brush. Moreover, our authoring tool makes a user generate a Chinese character animation easily and rapidly although she or he has not many knowledge in computer graphics, mobile programming or Chinese characters. The method to generate the stroke animation is following: We take basic character shape information represented with several contours from TTF(TrueType Font) and get the information for the stroke segmentation and stroke ordering from simple user input. And then, we decompose whole character shape into some strokes by using polygonal approximation technique. Next, the stroke animation for each stroke is automatically generated by the scan line algorithm ordered by the stroke direction. Finally, the ordered scan lines are compressed into some integers by reducing coordinate redundancy As a result, the stroke animation of our system is even smaller than GIF animation. Our method can be extended to rendering and animation of Hangul or general 2D shape based on vector graphics. We have the plan to find the method to automate the stroke segmentation and ordering without user input.

A Method to Improve Matching Success Rate between KOMPSAT-3A Imagery and Aerial Ortho-Images (KOMPSAT-3A 영상과 항공정사영상의 영상정합 성공률 향상 방법)

  • Shin, Jung-Il;Yoon, Wan-Sang;Park, Hyeong-Jun;Oh, Kwan-Young;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.893-903
    • /
    • 2018
  • The necessity of automatic precise georeferencing is increasing with the increase applications of high-resolution satellite imagery. One of the methods for collecting ground control points (GCPs) for precise georeferencing is to use chip images obtained by extracting a subset of an image map such as an ortho-aerial image, and can be automated using an image matching technique. In this case, the importance of the image matching success rate is increased due to the limitation of the number of the chip images for the known reference points such as the unified control point. This study aims to propose a method to improve the success rate of image matching between KOMPSAT-3A images and GCP chip images from aerial ortho-images. We performed the image matching with 7 cases of band pair using KOMPSAT-3A panchromatic (PAN), multispectral (MS), pansharpened (PS) imagery and GCP chip images, then compared matching success rates. As a result, about 10-30% of success rate is increased to about 40-50% when using PS imagery by using PAN and MS imagery. Therefore, using PS imagery for image matching of KOMPSAT-3A images and aerial ortho-images would be helpful to improve the matching success rate.