• Title/Summary/Keyword: 자동정보 추출

Search Result 1,995, Processing Time 0.037 seconds

Enhanced Local Directional Pattern based video shot boundary detection and automatic synchronization for STB quality inspection (STB 품질검사를 위한 개선된 지역 방향 패턴 기반 비디오 샷 경계 검출 및 자동 동기화)

  • Cho, Youngtak;Chae, Oksam
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.3
    • /
    • pp.8-15
    • /
    • 2019
  • Recently, the importance of pre-shipment quality inspection has been emphasized due to the increase of STB supply. In this paper, we propose a method to support automation of quality inspection through simultaneous multi-channel input of STB video signal. The proposed method extracts a fingerprint using the center scan line of the image after stable video shot boundary detection using CeLDP combining color information and LDP code and performs synchronization between input video channels. The proposed method shows stronger shot boundary detection performance than the conventional shot detection method. Through the experiments applied to the real environment, it is possible to secure reliability and real-time quality check for synchronization between multi-channel inputs required for STB quality inspection. Also, based on the proposed method, we intend to study a large-scale quality inspection method in the future and propose a more effective quality inspection system.

Hybrid Hazard Analysis for Improving Safety of Railway System (철도 시스템의 안전성 향상을 위한 하이브리드 위험원 분석)

  • Jeong, Daehui;Kwon, Gihwon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.133-144
    • /
    • 2018
  • IEC 62278, the Railway System Safety Standard, requires for hazard analysis to prevent or control the hazard that the railway system may have. If hazard analysis is not performed sufficiently, there is a high probability that accidents will occur. For this reason, hazard analysis methods are actively studied. In this paper, we propose the hybrid hazard analysis method to combine two representative hazard analysis methods: reliability-based and system-theoretic. As the proposed method is complementary to existing ones, it covers both the hazard caused by failure of components and the hazard occurred from the unintended control between components. It applies to the development of a safety protection mechanism for multiple cruise control system that automatically control the speed of trains to avoid the collision among trains. As a result, we drive more safety requirements than the existing analysis methods and it turns out that the safety requirements protect the trains with respect to the identified hazards.

GAN-based Automated Generation of Web Page Metadata for Search Engine Optimization (검색엔진 최적화를 위한 GAN 기반 웹사이트 메타데이터 자동 생성)

  • An, Sojung;Lee, O-jun;Lee, Jung-Hyeon;Jung, Jason J.;Yong, Hwan-Sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.79-82
    • /
    • 2019
  • This study aims to design and implement automated SEO tools that has applied the artificial intelligence techniques for search engine optimization (SEO; Search Engine Optimization). Traditional Search Engine Optimization (SEO) on-page optimization show limitations that rely only on knowledge of webpage administrators. Thereby, this paper proposes the metadata generation system. It introduces three approaches for recommending metadata; i) Downloading the metadata which is the top of webpage ii) Generating terms which is high relevance by using bi-directional Long Short Term Memory (LSTM) based on attention; iii) Learning through the Generative Adversarial Network (GAN) to enhance overall performance. It is expected to be useful as an optimizing tool that can be evaluated and improve the online marketing processes.

  • PDF

Implementation of Speech Recognition and Flight Controller Based on Deep Learning for Control to Primary Control Surface of Aircraft

  • Hur, Hwa-La;Kim, Tae-Sun;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.57-64
    • /
    • 2021
  • In this paper, we propose a device that can control the primary control surface of an aircraft by recognizing speech commands. The speech command consists of 19 commands, and a learning model is constructed based on a total of 2,500 datasets. The training model is composed of a CNN model using the Sequential library of the TensorFlow-based Keras model, and the speech file used for training uses the MFCC algorithm to extract features. The learning model consists of two convolution layers for feature recognition and Fully Connected Layer for classification consists of two dense layers. The accuracy of the validation dataset was 98.4%, and the performance evaluation of the test dataset showed an accuracy of 97.6%. In addition, it was confirmed that the operation was performed normally by designing and implementing a Raspberry Pi-based control device. In the future, it can be used as a virtual training environment in the field of voice recognition automatic flight and aviation maintenance.

A motion classification and retrieval system in baseball sports video using Convolutional Neural Network model

  • Park, Jun-Young;Kim, Jae-Seung;Woo, Yong-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.31-37
    • /
    • 2021
  • In this paper, we propose a method to effectively search by automatically classifying scenes in which specific images such as pitching or swing appear in baseball game images using a CNN(Convolution Neural Network) model. In addition, we propose a video scene search system that links the classification results of specific motions and game records. In order to test the efficiency of the proposed system, an experiment was conducted to classify the Korean professional baseball game videos from 2018 to 2019 by specific scenes. In an experiment to classify pitching scenes in baseball game images, the accuracy was about 90% for each game. And in the video scene search experiment linking the game record by extracting the scoreboard included in the game video, the accuracy was about 80% for each game. It is expected that the results of this study can be used effectively to establish strategies for improving performance by systematically analyzing past game images in Korean professional baseball games.

Design and Implementation of System for Estimating Diameter at Breast Height and Tree Height using LiDAR point cloud data

  • Jong-Su, Yim;Dong-Hyeon, Kim;Chi-Ung, Ko;Dong-Geun, Kim;Hyung-Ju, Cho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • In this paper, we propose a system termed ForestLi that can accurately estimate the diameter at breast height (DBH) and tree height using LiDAR point cloud data. The ForestLi system processes LiDAR point cloud data through the following steps: downsampling, outlier removal, ground segmentation, ground height normalization, stem extraction, individual tree segmentation, and DBH and tree height measurement. A commercial system, such as LiDAR360, for processing LiDAR point cloud data requires the user to directly correct errors in lower vegetation and individual tree segmentation. In contrast, the ForestLi system can automatically remove LiDAR point cloud data that correspond to lower vegetation in order to improve the accuracy of estimating DBH and tree height. This enables the ForestLi system to reduce the total processing time as well as enhance the accuracy of accuracy of measuring DBH and tree height compared to the LiDAR360 system. We performed an empirical study to confirm that the ForestLi system outperforms the LiDAR360 system in terms of the total processing time and accuracy of measuring DBH and tree height.

A Study on Designing Metadata Elements for the Management of Digitized Records (디지털화 기록 관리를 위한 메타데이터 요소(안) 설계)

  • Jiin, Seo;Jee-Hyun, Rho
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.22 no.4
    • /
    • pp.1-24
    • /
    • 2022
  • This study aims to design the metadata elements for managing and maintaining digitized records resulting from digitization. The digitized records were first defined and characterized, then assigned as copies and surrogates for source records. Next, the factors to be considered when designing metadata elements for digitized records were determined by comparing standards from different countries like the United States and the United Kingdom. As a result of the comparison, establishing a relationship between digitized records and source records, expanding the automatically extracted metadata elements following resource characteristics, and creating metadata for digitization processes and projects were set to be the key tasks of metadata design for managing digitized records. Furthermore, the metadata elements for digital records and digitization processes were designed individually, and the elements to be added for each entity were proposed by referring to standards from other counties.

A Study on the Deep Learning-Based Textbook Questionnaires Detection Experiment (딥러닝 기반 교재 문항 검출 실험 연구)

  • Kim, Tae Jong;Han, Tae In;Park, Ji Su
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.513-520
    • /
    • 2021
  • Recently, research on edutech, which combines education and technology in the e-learning field called learning, education and training, has been actively conducted, but it is still insufficient to collect and utilize data tailored to individual learners based on learning activity data that can be automatically collected from digital devices. Therefore, this study attempts to detect questions in textbooks or problem papers using artificial intelligence computer vision technology that plays the same role as human eyes. The textbook or questionnaire item detection model proposed in this study can help collect, store, and analyze offline learning activity data in connection with intelligent education services without digital conversion of textbooks or questionnaires to help learners provide personalized learning services even in offline learning.

Automatic Creation of ShEx Schemas for RML-Based RDF Knowledge Graph Validation

  • Choi, Ji-Woong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.67-80
    • /
    • 2022
  • In this paper, we propose a system which automatically generates the ShEx schemas to describe and validate RDF knowledge graphs constructed by RML mapping. ShEx schemas consist of constraints. The proposed system generates most of the constraints by converting the RML mapping rules. The schemas consisting only of constraints obtained from mapping rules can help users to figure out the structure of the graphs generated by RML mapping, but they are not sufficient for sophisticated validation purposes. For users who need a schema for validation, the proposed system is also able to provide the schema with added constraints generated from metadata extracted from the input data sources for RML mapping. The proposed system has the ability to handle CSV, XML, JSON or RDBMS as input data sources. Testing results from 297 cases show that the proposed system can be applied for RDF graph validation in various practical cases.

Implementation of Git's Commit Message Complex Classification Model for Software Maintenance

  • Choi, Ji-Hoon;Kim, Joon-Yong;Park, Seong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.131-138
    • /
    • 2022
  • Git's commit message is closely related to the project life cycle, and by this characteristic, it can greatly contribute to cost reduction and improvement of work efficiency by identifying risk factors and project status of project operation activities. Among these related fields, there are many studies that classify commit messages as types of software maintenance, and the maximum accuracy among the studies is 87%. In this paper, the purpose of using a solution using the commit classification model is to design and implement a complex classification model that combines several models to increase the accuracy of the previously published models and increase the reliability of the model. In this paper, a dataset was constructed by extracting automated labeling and source changes and trained using the DistillBERT model. As a result of verification, reliability was secured by obtaining an F1 score of 95%, which is 8% higher than the maximum of 87% reported in previous studies. Using the results of this study, it is expected that the reliability of the model will be increased and it will be possible to apply it to solutions such as software and project management.