• Title/Summary/Keyword: 자동정보 추출

Search Result 1,996, Processing Time 0.025 seconds

상품에 대한 공급자 검색 문제 해결하기 위한 지능형 상품 에이전트 개발

  • Chae, Sang-Yong;Kim, Gyeong-Pil;Kim, U-Ju;Kim, Chang-Uk
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.475-480
    • /
    • 2005
  • 인터넷상에 존재하는 수 많은 웹 페이지들에는 정형화되지 않은 각종 정보들이 이종의 형태로 산재되어 있다. 현재의 검색 기술을 통하여 필요한 정보를 찾아내는 것은 시간과 비용이 많이 소요되는 비효율적인 방법으로 이뤄지고 있다. 이러한 상황에서 사용자가 원하는 정보를 검색 및 추출해내어 정형화시키는 것은 매우 중요하다. 전자상거래의 폭발적 성장에도 불구하고 전자상거래 표준 활용 및 적용이 미비하여 e- Procurement, e-Marketplace, on-Line Shopping Mall 등에서 소비자가 원하는 상품 정보를 손쉽게 획득하지 못하고 있다. 이는 공급자에게는 보다 많은 매출의 기회를 구매자에게는 보다 좋은 자재 및 상품을 저렴한 가격에 소싱 할 수 있는 기회를 제공하지 못하는 문제점이 발생한다. 본 연구에서 제안하고자 하는 지능형 상품 에이전트는 소비자가 구매하고자 하는 특정 상품에 대한 공급자 검색 문제를 해결하기 위하여, 시스템 내부 정보의 확장 및 지식화 뿐만 아니라 웹 상의 다양한 상품 정보를 자동적으로 수집 및 가공하여 저장하는 역할을 수행한다. 이러한 연구를 위해서 사용한 기술은 우선 database 의 schema 를 읽어 들일 수 있는 DB schema reader, 인터넷 웹 페이지(웹문서)를 방문해서 다양한 정보들의 URL을 수집하는 일을 하는 Meta Search Engine 과 Focused Crawler, 그리고 다른 형태의 데이터 구조를 특정 목적에 따라 표준화된 형태로 바꾸는 Wrapper가 있다. 이러한 기술들을 연동하여 필요한 정보들을 추출 공급자 검색 문제를 해결하고자 하는 것이 연구의 목적이다. 정보추출은 사용자의 관심사에 적합한 문서들로부터 어떤 구체적인 사실이나 관계를 정확히 추출하는 작업을 가리킨다.앞으로 e-메일, 매신저, 전자결재, 지식관리시스템, 인터넷 방송 시스템의 기반 구조 역할을 할 수 있다. 현재 오픈웨어에 적용하기 위한 P2P 기반의 지능형 BPM(Business Process Management)에 관한 연구와 X인터넷 기술을 이용한 RIA (Rich Internet Application) 기반 웹인터페이스 연구를 진행하고 있다.태도와 유아의 창의성간에는 상관이 없는 것으로 나타났고, 일반 유아의 아버지 양육태도와 유아의 창의성간의 상관에서는 아버지 양육태도의 성취-비성취 요인에서와 창의성제목의 추상성요인에서 상관이 있는 것으로 나타났다. 따라서 창의성이 높은 아동의 아버지의 양육태도는 일반 유아의 아버지와 보다 더 애정적이며 자율성이 높지만 창의성이 높은 아동의 집단내에서 창의성에 특별한 영향을 더 미치는 아버지의 양육방식은 발견되지 않았다. 반면 일반 유아의 경우 아버지의 성취지향성이 낮을 때 자녀의 창의성을 향상시킬 수 있는 것으로 나타났다. 이상에서 자녀의 창의성을 향상시키는 중요한 양육차원은 애정성이나 비성취지향성으로 나타나고 있어 정서적인 측면의 지원인 것으로 밝혀졌다.징에서 나타나는 AD-SR맥락의 반성적 탐구가 자주 나타났다. 반성적 탐구 척도 두 그룹을 비교 했을 때 CON 상호작용의 특징이 낮게 나타나는 N그룹이 양적으로 그리고 내용적으로 더 의미 있는 반성적 탐구를 했다용을 지원하는 홈페이지를 만들어 자료 제공 사이트에 대한 메타 자료를 데이터베이스화했으며 이를 통해 학생들이 원하는 실시간 자료를 검색하여 찾을 수 있고 홈페이지를 방분했을 때 이해하기 어려운 그래프나 각 홈페이지가 제공하는 자료들에 대한 처리 방법을 도움말로 제공받을 수 있게 했다. 실시간 자료들을 이용한 학습은 학생들의 학습 의욕과 탐구 능력을 향상시켰으

  • PDF

Automatic Anticipation Generation for 3D Facial Animation (3차원 얼굴 표정 애니메이션을 위한 기대효과의 자동 생성)

  • Choi Jung-Ju;Kim Dong-Sun;Lee In-Kwon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.1
    • /
    • pp.39-48
    • /
    • 2005
  • According to traditional 2D animation techniques, anticipation makes an animation much convincing and expressive. We present an automatic method for inserting anticipation effects to an existing facial animation. Our approach assumes that an anticipatory facial expression can be found within an existing facial animation if it is long enough. Vertices of the face model are classified into a set of components using principal components analysis directly from a given hey-framed and/or motion -captured facial animation data. The vortices in a single component will have similar directions of motion in the animation. For each component, the animation is examined to find an anticipation effect for the given facial expression. One of those anticipation effects is selected as the best anticipation effect, which preserves the topology of the face model. The best anticipation effect is automatically blended with the original facial animation while preserving the continuity and the entire duration of the animation. We show experimental results for given motion-captured and key-framed facial animations. This paper deals with a part of broad subject an application of the principles of traditional 2D animation techniques to 3D animation. We show how to incorporate anticipation into 3D facial animation. Animators can produce 3D facial animation with anticipation simply by selecting the facial expression in the animation.

A Study on Object Based Image Analysis Methods for Land Use and Land Cover Classification in Agricultural Areas (변화지역 탐지를 위한 시계열 KOMPSAT-2 다중분광 영상의 MAD 기반 상대복사 보정에 관한 연구)

  • Yeon, Jong-Min;Kim, Hyun-Ok;Yoon, Bo-Yeol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.66-80
    • /
    • 2012
  • It is necessary to normalize spectral image values derived from multi-temporal satellite data to a common scale in order to apply remote sensing methods for change detection, disaster mapping, crop monitoring and etc. There are two main approaches: absolute radiometric normalization and relative radiometric normalization. This study focuses on the multi-temporal satellite image processing by the use of relative radiometric normalization. Three scenes of KOMPSAT-2 imagery were processed using the Multivariate Alteration Detection(MAD) method, which has a particular advantage of selecting PIFs(Pseudo Invariant Features) automatically by canonical correlation analysis. The scenes were then applied to detect disaster areas over Sendai, Japan, which was hit by a tsunami on 11 March 2011. The case study showed that the automatic extraction of changed areas after the tsunami using relatively normalized satellite data via the MAD method was done within a high accuracy level. In addition, the relative normalization of multi-temporal satellite imagery produced better results to rapidly map disaster-affected areas with an increased confidence level.

Information Structuring of Diagram Repository for UML Diagrams (UML 다이어그램을 위한 다이어그램 레포지토리의 정보구조화)

  • Kim, Yun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1588-1595
    • /
    • 2019
  • This paper presents the technique on structuring information of the diagram repository for UML diagrams. Because object interactions are the body of object-oriented programming, this paper handles especially the sequence diagrams and class diagrams among UML diagrams. Based on class diagrams, sequence diagrams represent the procedure of object interactions in run-time and then the corresponding codes are generated from the contents of those sequence diagrams. To do this work, this paper presents a method to construct the information repository for generating code from the contents of sequence diagrams. This paper classifies the five message types of sequence diagrams and then extracts the needed information including items and values on the corresponding message types for constructing message repositories. Because sequence diagram is composed of messages included, the final repository is constructed by collecting each of structured repositories on messages sequentially.

Verification of VIIRS Data using AIS data and automatic extraction of nigth lights (AIS 자료를 이용한 VIIRS 데이터의 야간 불빛 자동 추출 및 검증)

  • Suk Yoon;Hyeong-Tak Lee;Hey-Min Choi;;Jeong-Seok Lee;Hee-Jeong Han;Hyun Yang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.104-105
    • /
    • 2023
  • 해양 관측과 위성 원격탐사를 이용하여 시공간적으로 다양하게 변하는 생태 어장 환경 및 선박 관련 자료를 획득할 수 있다. 이번 연구의 주요 목적은 야간 불빛 위성 자료를 이용하여 광범위한 해역에 대한 어선의 위치 분포를 파악하는 딥러닝 기반 모델을 제안하는 것이다. 제안한 모델의 정확성을 평가하기 위해 야간 조업 어선의 위치를 포함하고 있는 AIS(Automatic Identification System) 정보와 상호 비교 평가 하였다. 이를 위해, 먼저 AIS 자료를 획득 및 분석하는 방법을 소개한다. 해양안전종합시스템(General Information Center on Maritime Safety & Security, GICOMS)으로부터 제공받은 AIS 자료는 동적정보와 정적정보로 나뉜다. 동적 정보는 일별 자료로 구분되어있으며, 이 정보에는 해상이동업무식별번호(Maritime Mobile Service Identity, MMSI), 선박의 시간, 위도, 경도, 속력(Speed over Ground, SOG), 실침로(Course over Ground, COG), 선수방향(Heading) 등이 포함되어 있다. 정적정보는 1개의 파일로 구성되어 있으며, 선박명, 선종 코드, IMO Number, 호출부호, 제원(DimA, DimB, DimC, Dim D), 홀수, 추정 톤수 등이 포함되어 있다. 이번 연구에서는 선박의 정보에서 어선의 정보를 추출하여 비교 자료로 사용하였으며, 위성 자료는 구름의 영향이 없는 깨끗한 날짜의 영상 자료를 선별하여 사용하였다. 야간 불빛 위성 자료, 구름 정보 등을 이용하여 야간 조업 어선의 불빛을 감지하는 심층신경망(Deep Neural Network; DNN) 기반 모델을 제안하였다. 본 연구의결과는 야간 어선의 분포를 감시하고 한반도 인근 어장을 보호하는데 기여할 것으로 기대된다.

  • PDF

Design of Automatic Document Classifier for IT documents based on SVM (SVM을 이용한 디렉토리 기반 기술정보 문서 자동 분류시스템 설계)

  • Kang, Yun-Hee;Park, Young-B.
    • Journal of IKEEE
    • /
    • v.8 no.2 s.15
    • /
    • pp.186-194
    • /
    • 2004
  • Due to the exponential growth of information on the internet, it is getting difficult to find and organize relevant informations. To reduce heavy overload of accesses to information, automatic text classification for handling enormous documents is necessary. In this paper, we describe structure and implementation of a document classification system for web documents. We utilize SVM for documentation classification model that is constructed based on training set and its representative terms in a directory. In our system, SVM is trained and is used for document classification by using word set that is extracted from information and communication related web documents. In addition, we use vector-space model in order to represent characteristics based on TFiDF and training data consists of positive and negative classes that are represented by using characteristic set with weight. Experiments show the results of categorization and the correlation of vector length.

  • PDF

Indoor Scene Classification based on Color and Depth Images for Automated Reverberation Sound Editing (자동 잔향 편집을 위한 컬러 및 깊이 정보 기반 실내 장면 분류)

  • Jeong, Min-Heuk;Yu, Yong-Hyun;Park, Sung-Jun;Hwang, Seung-Jun;Baek, Joong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.384-390
    • /
    • 2020
  • The reverberation effect on the sound when producing movies or VR contents is a very important factor in the realism and liveliness. The reverberation time depending the space is recommended in a standard called RT60(Reverberation Time 60 dB). In this paper, we propose a scene recognition technique for automatic reverberation editing. To this end, we devised a classification model that independently trains color images and predicted depth images in the same model. Indoor scene classification is limited only by training color information because of the similarity of internal structure. Deep learning based depth information extraction technology is used to use spatial depth information. Based on RT60, 10 scene classes were constructed and model training and evaluation were conducted. Finally, the proposed SCR + DNet (Scene Classification for Reverb + Depth Net) classifier achieves higher performance than conventional CNN classifiers with 92.4% accuracy.

Region-based Building Extraction of High Resolution Satellite Images Using Color Invariant Features (색상 불변 특징을 이용한 고해상도 위성영상의 영역기반 건물 추출)

  • Ko, A-Reum;Byun, Young-Gi;Park, Woo-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.75-87
    • /
    • 2011
  • This paper presents a method for region-based building extraction from high resolution satellite images(HRSI) using integrated information of spectral and color invariant features without user intervention such as selecting training data sets. The purpose of this study is also to evaluate the effectiveness of the proposed method by applying to IKONOS and QuickBird images. Firstly, the image is segmented by the MSRG method. The vegetation and shadow regions are automatically detected and masked to facilitate the building extraction. Secondly, the region merging is performed for the masked image, which the integrated information of the spectral and color invariant features is used. Finally, the building regions are extracted using the shape feature for the merged regions. The boundaries of the extracted buildings are simplified using the generalization techniques to improve the completeness of the building extraction. The experimental results showed more than 80% accuracy for two study areas and the visually satisfactory results obtained. In conclusion, the proposed method has shown great potential for the building extraction from HRSI.

Acceleration of Viewport Extraction for Multi-Object Tracking Results in 360-degree Video (360도 영상에서 다중 객체 추적 결과에 대한 뷰포트 추출 가속화)

  • Heesu Park;Seok Ho Baek;Seokwon Lee;Myeong-jin Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.3
    • /
    • pp.306-313
    • /
    • 2023
  • Realistic and graphics-based virtual reality content is based on 360-degree videos, and viewport extraction through the viewer's intention or automatic recommendation function is essential. This paper designs a viewport extraction system based on multiple object tracking in 360-degree videos and proposes a parallel computing structure necessary for multiple viewport extraction. The viewport extraction process in 360-degree videos is parallelized by composing pixel-wise threads, through 3D spherical surface coordinate transformation from ERP coordinates and 2D coordinate transformation of 3D spherical surface coordinates within the viewport. The proposed structure evaluated the computation time for up to 30 viewport extraction processes in aerial 360-degree video sequences and confirmed up to 5240 times acceleration compared to the CPU-based computation time proportional to the number of viewports. When using high-speed I/O or memory buffers that can reduce ERP frame I/O time, viewport extraction time can be further accelerated by 7.82 times. The proposed parallelized viewport extraction structure can be applied to simultaneous multi-access services for 360-degree videos or virtual reality contents and video summarization services for individual users.

Pulmonary Nodule Detection based on Hierarchical 3D Block Analysis in Chest CT scans (흉부 CT영상에서 계층적 삼차원 블록 분석을 이용한 폐결절 검출)

  • Choi, Wook-Jin;Choi, Tae-Sun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.1
    • /
    • pp.13-19
    • /
    • 2012
  • In this paper, we propose the pulmonary nodule detection method based on hierarchical 3D block analysis. The proposed system consists of two main part. In the first part, we select the block which is need to analysis. In the second part, we analysis the selected blocks. We extract the shape based features of the object in the selected blocks. Support Vector Machine is applied to the extracted features to classify into nodules and non-nodules.