• Title/Summary/Keyword: 자동정보 추출

Search Result 1,996, Processing Time 0.031 seconds

A English Composition Level Assessment System Using Machine Learning Techniques (기계학습기법을 이용한 영어작문 문장 수준평가 시스템)

  • Eom, Jin-Hee;Kwak, Dong-Min
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1290-1293
    • /
    • 2013
  • 본 논문은 문장 내에서 나타나는 어휘간의 관계를 통해 표현 수준을 자동으로 평가할 수 있는 시스템을 제안한다. 제안하는 방법은 영어에세이 코퍼스 내의 문장에서 발생하는 철자 및 문법의 오류와 함께 어휘와 문법 패턴에 따른 표현난이도를 평가할 수 있는 자질을 생성하고 다양한 기계학습기법을 사용하여 문장의 수준을 평가하고자 하였다. 또한 기존에 연구되어온 규칙기반의 문장 평가시스템을 구현하고 기계학습기법을 이용한 문장 평가시스템과 비교하였다. 이를 통해 철자 및 문법의 오류율뿐만 아니라 표현난이도를 평가할 수 있는 자질들이 유용함을 확인할 수 있었다. 영어작문 문장의 수준평가를 위해서 국내 학생들의 토플 에세이 코퍼스를 수집하여 2,000문장을 추출하였고, 4명의 전문평가자들을 통해 6단계로 평가하여 학습 및 테스트 세트를 구성하였다. 성능척도로는 정확률과 재현율을 사용하였으며, 제안하는 방법으로 67.3%의 정확률과 67.1%의 재현율을 보였다.

Development of RPA with Information Extraction Module (문서에서 정보 추출 기능을 갖는 RPA 개발)

  • Kim, Ki-Tae;Jeong, Su-Na;Lee, Se-Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.435-436
    • /
    • 2021
  • 본 논문에서는 RPA(Robotic Process Automation) Tool 개발 과정 중 OCR기법을 활용한 영수증 인식 후 가계부 생성에 관한 자동화 처리 과정을 기술한다. 개발된 RPA 툴은 AI분야에 사용될 데이터의 데이터 전처리 기능을 제공하고 그 외에 반복적으로 사용되는 기능들의 자동화를 제공한다. 그 중 영수증을 이용하여 가계부 작성을 자동으로 처리해주는 기능은 반복적이고 시간이 많이 소요되는 작업으로 이 기능을 활용하면 작업의 수행시간을 단축하고 효율적인 관리가 가능하다.

  • PDF

Named Entity Tagged Corpus Augmentation Using Co-hyponym Replacement (형제어 대체를 이용한 개체명 말뭉치 확장)

  • Kim, Jae-Kyun;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Hyuk-Ro;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.179-183
    • /
    • 2020
  • 말뭉치는 기계학습 및 심층학습을 위한 필수 자원이다. 한국어 개체명의 경우 학습에 사용할 잘 정제된 개체명 부착 말뭉치가 충분하지 않다. 말뭉치 정제 작업은 시간적, 경제적으로 많은 비용이 소모된다. 따라서 본 논문에서는 적은 양의 말뭉치를 이용하여 말뭉치를 자동적으로 확장하는 방법을 제안한다. 특별히 소규모 말뭉치에 속하는 문장의 단어에 대한 형제어들을 선정하여 형제어의 확률추출을 기반으로 대체함으로써 새로운 문장을 생성함으로써 말뭉치 확장하는 방법이다. 본 논문에서는 확장된 말뭉치를 이용해서 대부분의 시스템에서 성능이 향상됨을 확인할 수 있었다. 앞으로 단어의 삭제 및 삽입 등 다양한 방법으로 좀 더 다양한 문장을 생성할 수 있을 것으로 생각합니다.

  • PDF

Analysis and Study of Internal Learning Trend of Deep Classifier according to Depth (깊이에 따른 중간 단계 분류기 내부 학습 경향 분석 및 고찰)

  • Seong, Su-Jin;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.115-119
    • /
    • 2019
  • 딥러닝 모델은 자동으로 자질을 추출하고 추상화 하기 위해 깊은 은닉층을 가지며, 이전 연구들은 이러한 은닉층을 깊게 쌓는 것이 성능 향상에 기여한다는 것을 증명해왔다. 하지만 데이터나 태스크에 따라 높은 성능을 내는 깊이가 다르고, 모델 깊이 설정에 대한 명확한 근거가 부족하다. 본 논문은 데이터 셋에 따라 적합한 깊이가 다르다고 가정하고, 이를 확인하기 위해 모델 내부에 분류기를 추가하여 모델 내부의 학습 경향을 확인하였다. 그 결과 태스크나 입력의 특성에 따라 필요로 하는 깊이에 차이가 있음을 발견하였고, 이를 근거로 가변적으로 깊이를 선택하여 모델의 출력을 조절하여 그 결과 성능이 향상됨을 확인하였다.

  • PDF

A Study on the Emotional Analysis Algorithm of Smartphone Users (스마트폰 사용자의 감정분석 알고리즘 연구)

  • Baeck, Ju-Yeon;Shin, Hye-Seung;Won, Eun-Ji;Yoon, Ye-Seul
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1261-1264
    • /
    • 2021
  • 현대 사회의 스트레스 문제가 심각해짐에 따라 각종 스트레스 관리 서비스가 꾸준히 개발되고 있으나, 해당 서비스들은 정서 상태 판단을 사용자가 직접 입력하는 데이터에만 의존하기 때문에 분석 결과를 완벽히 신뢰하기 어렵다. 본 연구에서 개발한 앱 S-detector는 스마트폰 사용 시간 및 빈도 정보를 자동으로 수집하고, 사용자가 작성한 일기 데이터에서는 감정 단어를 추출하여 스마트폰 사용 데이터와 일기 데이터를 각각 분석, 종합적으로 판단하는 알고리즘을 가지고 있다. 따라서 사용자가 심리·정신적 문제 가능성을 쉽게 인지하는 데 도움을 주는 앱으로서 해당 문제를 예방하거나 조기에 해결함을 목표로 한다.

Implementation of animation of 3D human model through pose estimation (포즈 추정을 통한 3D 휴먼 모델의 애니메이팅 구현)

  • Jang, Ye-Won;Park, Byung-Seo;Park, Jung-Tak;Lee, Sol;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.190-191
    • /
    • 2022
  • 본 논문에서는 RGB-D 카메라와 Mediapipe 모듈을 이용한 신체 추적 및 리깅 프레임 워크를 제안한다. Openpose 및 Mediapipe를 통해 스켈레톤 정보를 추출할 수 있으며, 이 정보를 그래픽스 엔진의 입력으로 사용하여 휴머노이드 아바타 기능을 통해 각 캐릭터의 아바타가 다르더라도 리깅을 구현할 수 있다. 결과적으로 수작업을 통해 리깅을 구현하는 시간을 단축시킬 수 있다. 두 모듈과 RGB-D 카메라를 통해 획득한 3차원 스켈레톤 정보를 통해 실시간으로 사용자를 추적하고 자동 rigging하는 그래픽스 엔진 프레임 워크를 제안한다.

  • PDF

Improving Table Question Answering Using Prompt (프롬프트를 이용한 표 질의응답의 성능향상)

  • Jeongyeon Park;Donghyeok Lee;Hyeong Jin Shin;Kyungbeen Cho;Jae Sung Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.395-398
    • /
    • 2023
  • 표 질의응답이란, 주어진 표에서 질의문에 대한 답변을 자동으로 추출하거나 생성하는 기술을 말한다. 최근 언어모델을 사용한 연구들은 정답을 유도할 수 있는 명령문인 프롬프트를 활용하여 더 높은 성능을 보이고 있다. 본 연구에서는 표 질의응답의 성능을 향상시키기 위해, 프롬프트를 효과적으로 사용할 수 있는 모델을 제안한다. 이와 함께, 다양한 형태의 프롬프트를 사용하여 모델을 평가한다. 실험 결과, 기본 모델에 단순 질의문만 입력으로 사용했을 때의 성능 F1 67.5%에 비해, 다양한 프롬프트를 입력으로 사용한 경우 1.6%p 향상된 F1 69.1%을 보였다. 또한, 다양한 프롬프트와 함께 제안 모델을 사용했을 때에는 기본 모델보다 2.2%p 높은 F1 69.7%을 달성했다.

  • PDF

A Collaborative Reputation System for e-Learning Content (협업적 이러닝 콘텐츠 평판시스템 연구)

  • Cho, Jinhyung;Kang, Hwan Soo
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.235-242
    • /
    • 2013
  • Reputation systems aggregate users' feedback after the completion of a transaction and compute the "reputation" of products, services, or providers, which can assist other users in decision-making in the future. With the rapid growth of online e-Learning content providing services, a suitable reputation system for more credible e-Learning content delivery has become important and is essential if educational content providers are to remain competitive. Most existing reputation systems focus on generating ratings only for user reputation; they fail to consider the reputations of products or services(item reputation). However, it is essential for B2C e-Learning services to have a reliable reputation rating mechanism for items since they offer guidance for decision-making by presenting the ranks or ratings of e-Learning content items. To overcome this problem, we propose a novel collaborative filtering based reputation rating method. Collaborative filtering, one of the most successful recommendation methods, can be used to improve a reputation system. In this method, dual information sources are formed with groups of co-oriented users and expert users and to adapt it to the reputation rating mechanism. We have evaluated its performance experimentally by comparing various reputation systems.

AEMSER Using Adaptive Threshold Of Canny Operator To Extract Scene Text (장면 텍스트 추출을 위한 캐니 연산자의 적응적 임계값을 이용한 AEMSER)

  • Park, Sunhwa;Kim, Donghyun;Im, Hyunsoo;Kim, Honghoon;Paek, Jaegyung;Park, Jaeheung;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.16 no.6
    • /
    • pp.951-959
    • /
    • 2015
  • Scene text extraction is important because it offers some important information on different image based applications pouring in current smart generation. Edge-Enhanced MSER(Maximally Stable Extremal Regions) which enhances the boundaries using the canny operator after extracting the basic MSER shows excellent performance in terms of text extraction. But according to setting the threshold of the canny operator, the result images using Edge-Enhanced MSER are different, so there needs a method figuring out the threshold. In this paper, we propose a AEMSER(Adaptive Edge-enhanced MSER) that applies the method extracting the boundary using the middle value of histogram to Edge-Enhanced MSER to get the canny operator's threshold. The proposed method can acquire better result images than the existing methods because it extracts the area only for the obvious boundaries.

An Extraction Method of Glomerulus Region from Renal Tissue Image (신장조직 영상에서 사구체 영역의 추출법)

  • Kim, Eung-Kyeu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.2
    • /
    • pp.70-76
    • /
    • 2012
  • In this paper, an automatic extraction method of glomerulus region from human renal tissue image is presented. The important information reflecting the state of kidneys richly included in the glomeruli, so it should be the first step to extract the glomerulus region from the renal tissue image for the further quantitative analysis of the renal condition. Especially, there is no clear difference between the glomerulus and other tissues, so the glomerulus region can not be easily extracted from its background by the existing segmentation methods. The outer edge of a glomerulus region is regarded as a common property for the regions of this kind ; a two- dimensional Gaussian distribution is used to convolve with an original image first and then the image is thresholded at this blurred image ; a closed curve corresponding to the outer edge can be obtained by usual pattern processing skills like thinning, branch-cutting, hole-filling etc., Finally, the glomerulus region can be obtained by extracting the area in the original image surrounded by the closed curve. The glomerulus regions are correctly extracted by 85 percentages and experimental results show the proposed method is effective.