• Title/Summary/Keyword: 자동정보 추출

Search Result 1,996, Processing Time 0.026 seconds

A Study on Point Cloud Generation Method from UAV Image Using Incremental Bundle Adjustment and Stereo Image Matching Technique (Incremental Bundle Adjustment와 스테레오 영상 정합 기법을 적용한 무인항공기 영상에서의 포인트 클라우드 생성방안 연구)

  • Rhee, Sooahm;Hwang, Yunhyuk;Kim, Soohyeon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.941-951
    • /
    • 2018
  • Utilization and demand of UAV (unmanned aerial vehicle) for the generation of 3D city model are increasing. In this study, we performed an experiment to adjustment position/orientation of UAV with incomplete attitude information and to extract point cloud data. In order to correct the attitude of the UAV, the rotation angle was calculated by using the continuous position information of UAV movements. Based on this, the corrected position/orientation information was obtained by applying IBA (Incremental Bundle Adjustment) based on photogrammetry. Each pair was transformed into an epipolar image, and the MDR (Multi-Dimensional Relaxation) technique was applied to obtain high precision DSM. Each extracted pair is aggregated and output in the form of a single point cloud or DSM. Using the DJI inspire1 and Phantom4 images, we can confirm that the point cloud can be extracted which expresses the railing of the building clearly. In the future, research will be conducted on improving the matching performance and establishing sensor models of oblique images. After that, we will continue the image processing technology for the generation of the 3D city model through the study of the extraction of 3D cloud It should be developed.

A Robust Object Extraction Method for Immersive Video Conferencing (몰입형 화상 회의를 위한 강건한 객체 추출 방법)

  • Ahn, Il-Koo;Oh, Dae-Young;Kim, Jae-Kwang;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.11-23
    • /
    • 2011
  • In this paper, an accurate and fully automatic video object segmentation method is proposed for video conferencing systems in which the real-time performance is required. The proposed method consists of two steps: 1) accurate object extraction on the initial frame, 2) real-time object extraction from the next frame using the result of the first step. Object extraction on the initial frame starts with generating a cumulative edge map obtained from frame differences in the beginning. This is because we can estimate the initial shape of the foreground object from the cumulative motion. This estimated shape is used to assign the seeds for both object and background, which are needed for Graph-Cut segmentation. Once the foreground object is extracted by Graph-Cut segmentation, real-time object extraction is conducted using the extracted object and the double edge map obtained from the difference between two successive frames. Experimental results show that the proposed method is suitable for real-time processing even in VGA resolution videos contrary to previous methods, being a useful tool for immersive video conferencing systems.

Automatic Prostate Segmentation in MR Images based on Active Shape Model Using Intensity Distribution and Gradient Information (MR 영상에서 밝기값 분포 및 기울기 정보를 이용한 활성형상모델 기반 전립선 자동 분할)

  • Jang, Yu-Jin;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.2
    • /
    • pp.110-119
    • /
    • 2010
  • In this paper, we propose an automatic segmentation of the prostate using intensity distribution and gradient information in MR images. First, active shape model using adaptive intensity profile and multi-resolution technique is used to extract the prostate surface. Second, hole elimination using geometric information is performed to prevent the hole from occurring by converging the surface shape to the local optima. Third, the surface shape with large anatomical variation is corrected by using 2D gradient information. In this case, the corrected surface shape is often represented as rugged shape which is generated by the limited number of vertices. Thus, it is reconstructed by using surface modelling and smoothing. To evaluate our method, we performed the visual inspection, accuracy measures and processing time. For accuracy evaluation, the average distance difference and the overlapping volume ratio between automatic segmentation and manual segmentation by two radiologists are calculated. Experimental results show that the average distance difference was 0.3${\pm}$0.21mm and the overlapping volume ratio was 96.31${\pm}$2.71%. The total processing time of twenty patient data was 16 seconds on average.

Mining Semantically Similar Tags from Delicious (딜리셔스에서 유사태그 추출에 관한 연구)

  • Yi, Kwan
    • Journal of the Korean Society for information Management
    • /
    • v.26 no.2
    • /
    • pp.127-147
    • /
    • 2009
  • The synonym issue is an inherent barrier in human-computer communication, and it is more challenging in a Web 2.0 application, especially in social tagging applications. In an effort to resolve the issue, the goal of this study is to test the feasibility of a Web 2.0 application as a potential source for synonyms. This study investigates a way of identifying similar tags from a popular collaborative tagging application, Delicious. Specifically, we propose an algorithm (FolkSim) for measuring the similarity of social tags from Delicious. We compared FolkSim to a cosine-based similarity method and observed that the top-ranked tags on the similar list generated by FolkSim tend to be among the best possible similar tags in given choices. Also, the lists appear to be relatively better than the ones created by CosSim. We also observed that tag folksonomy and similar list resemble each other to a certain degree so that it possibly serves as an alternative outcome, especially in case the FolkSim-based list is unavailable or infeasible.

A Robust Pattern-based Feature Extraction Method for Sentiment Categorization of Korean Customer Reviews (강건한 한국어 상품평의 감정 분류를 위한 패턴 기반 자질 추출 방법)

  • Shin, Jun-Soo;Kim, Hark-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.12
    • /
    • pp.946-950
    • /
    • 2010
  • Many sentiment categorization systems based on machine learning methods use morphological analyzers in order to extract linguistic features from sentences. However, the morphological analyzers do not generally perform well in a customer review domain because online customer reviews include many spacing errors and spelling errors. These low performances of the underlying systems lead to performance decreases of the sentiment categorization systems. To resolve this problem, we propose a feature extraction method based on simple longest matching of Eojeol (a Korean spacing unit) and phoneme patterns. The two kinds of patterns are automatically constructed from a large amount of POS (part-of-speech) tagged corpus. Eojeol patterns consist of Eojeols including content words such as nouns and verbs. Phoneme patterns consist of leading consonant and vowel pairs of predicate words such as verbs and adjectives because spelling errors seldom occur in leading consonants and vowels. To evaluate the proposed method, we implemented a sentiment categorization system using a SVM (Support Vector Machine) as a machine learner. In the experiment with Korean customer reviews, the sentiment categorization system using the proposed method outperformed that using a morphological analyzer as a feature extractor.

Automated Detection and Volume Calculation of Nodular Lung Cancer on CT Scans (CT 영상에서 결절성 폐암의 자동추출 및 체적계산)

  • Kim, Do-Yeon;Kim, Jin-Hwan;Noh, Seung-Moo;Park, Jong-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.5
    • /
    • pp.451-457
    • /
    • 2001
  • This paper describes automated methods for the detection of lung nodules and their volume calculation on CT scans. Gray-level threshold methods were used to segment the thorax from the background and then the lung parenchymes from the thoracic wall and mediastinum. A scanning-ball algorithm was applied to more accurately delineate the lung boundaries, thereby incorporating peripheral nodules contiguous to pleural surface within the segmented lung parenchymes. The lesions which have the high gray value were extracted from the segmented lung parenchymes. The selected lesions include nodules, blood vessels and partial volume effects. The discriminating features such as size, solid-shape, average, standard deviation and correlation coefficient of selected lesions were used to distinguish true nodules from pseudo-lesions. Volume and circularity calculation were performed for each identified nodules. The identified nodules were sorted in descending order of the volume. These method were applied to 621 image slices of 19 cases. The sensitivity was 95% and there was no false-positive result.

  • PDF

Matching Points Extraction Between Optical and TIR Images by Using SURF and Local Phase Correlation (SURF와 지역적 위상 상관도를 활용한 광학 및 열적외선 영상 간 정합쌍 추출)

  • Han, You Kyung;Choi, Jae Wan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.81-88
    • /
    • 2015
  • Various satellite sensors having ranges of the visible, infrared, and thermal wavelengths have been launched due to the improvement of hardware technologies of satellite sensors development. According to the development of satellite sensors with various wavelength ranges, the fusion and integration of multisensor images are proceeded. Image matching process is an essential step for the application of multisensor images. Some algorithms, such as SIFT and SURF, have been proposed to co-register satellite images. However, when the existing algorithms are applied to extract matching points between optical and thermal images, high accuracy of co-registration might not be guaranteed because these images have difference spectral and spatial characteristics. In this paper, location of control points in a reference image is extracted by SURF, and then, location of their corresponding pairs is estimated from the correlation of the local similarity. In the case of local similarity, phase correlation method, which is based on fourier transformation, is applied. In the experiments by simulated, Landsat-8, and ASTER datasets, the proposed algorithm could extract reliable matching points compared to the existing SURF-based method.

Medical Image Classification and Retrieval Using BoF Feature Histogram with Random Forest Classifier (Random Forest 분류기와 Bag-of-Feature 특징 히스토그램을 이용한 의료영상 자동 분류 및 검색)

  • Son, Jung Eun;Ko, Byoung Chul;Nam, Jae Yeal
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.4
    • /
    • pp.273-280
    • /
    • 2013
  • This paper presents novel OCS-LBP (Oriented Center Symmetric Local Binary Patterns) based on orientation of pixel gradient and image retrieval system based on BoF (Bag-of-Feature) and random forest classifier. Feature vectors extracted from training data are clustered into code book and each feature is transformed new BoF feature using code book. BoF features are applied to random forest for training and random forest having N classes is constructed by combining several decision trees. For testing, the same OCS-LBP feature is extracted from a query image and BoF is applied to trained random forest classifier. In contrast to conventional retrieval system, query image selects similar K-nearest neighbor (K-NN) classes after random forest is performed. Then, Top K similar images are retrieved from database images that are only labeled K-NN classes. Compared with other retrieval algorithms, the proposed method shows both fast processing time and improved retrieval performance.

Feature Extraction Using Trace Transform for Insect Footprint Recognition (곤충 발자국 패턴 인식을 위한 Trace Transform 기반의 특징값 추출)

  • Shin, Bok-Suk;Cho, Kyoung-Won;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.1095-1100
    • /
    • 2008
  • In a process of insect foot recognition, footprint segments as basic areas for recognition need to be extracted from scanned insect footprints and appropriate features should be found from the footprint segments in order to discriminate kinds of insects, because the characteristics of the features are important to classify insects. In this paper, we propose methods for automatic footprint segmentation and feature extraction. We use a Trace transform method in order to find out appropriate features from the extracted segments by the above methods. The Trace transform method builds a new type of data structure from the segmented images by functions using parallel trace lines and the new type of data structure has characteristics invariant to translation, rotation and reflection of images. This data structure is converted to Triple features by Diametric and Circus functions, and the Triple features are used for discriminating patterns of insect footprints. In this paper, we show that the Triple features found by the proposed methods are enough distinguishable and appropriate for classifying kinds of insects.

An Automatic Segmentation Method for Video Object Plane Generation (비디오 객체 생성을 위한 자동 영상 분할 방법)

  • 최재각;김문철;이명호;안치득;김성대
    • Journal of Broadcast Engineering
    • /
    • v.2 no.2
    • /
    • pp.146-155
    • /
    • 1997
  • The new video coding standard Iv1PEG-4 is enabling content-based functionalities. It requires a prior decomposition of sequences into video object planes (VOP's) so that each VOP represents moving objets. This paper addresses an image segmentation method for separating moving objects from still background (non-moving area) in video sequences using a statistical hypothesis test. In the proposed method. three consecutive image frames are exploited and a hypothesis testing is performed by comparing two means from two consecutive difference images. which results in a T-test. This hypothesis test yields a change detection mask that indicates moving areas (foreground) and non-moving areas (background), Moreover. an effective method for extracting

  • PDF