• Title/Summary/Keyword: 자동정보 추출

Search Result 1,996, Processing Time 0.035 seconds

Favorable analysis of users through the social data analysis based on sentimental analysis (소셜데이터 감성분석을 통한 사용자의 호감도 분석)

  • Lee, Min-gyu;Sohn, Hyo-jung;Seong, Baek-min;Kim, Jong-bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.438-440
    • /
    • 2014
  • Recently it is used commercially to actively move the data from the SNS service. Therefore, we propose a method that can accurately analyze the information related to the reputation of companies and products in real time SNS environment in this paper.Identify the relationship between words by performing morphological analysis on the text data gathered by crawling the SNS scheme. In addition, it shows the visualization to analyze statistically through a established emotional dictionary morphemes are extracted from the sentence. Here, if the extracted word is not exist in sentimental dictionary. Also, we propose the algorithm that add the word to emotional dictionary automatically.

  • PDF

Thoracic Spine Segmentation of X-ray Images Using a Modified HRNet (수정된 HRNet을 이용한 X-ray 영상의 흉추 분할 기법)

  • Lee, Ye-Eun;Lee, Dong-Gyu;Jeong, Ji-Hoon;Kim, Hyung-Kyu;Kim, Ho-Joon
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.705-707
    • /
    • 2022
  • 인체의 흉부 X-ray 영상으로부터 척추질환과 관련된 의료 진단지표를 자동으로 추출하는 과정을 위하여 흉추조직의 정확한 분할이 필요하다. 본 연구에서는 HRNet 기반의 학습을 통하여 흉추조직을 분할하는 방법을 고찰한다. 분할 과정에서 영상 내의 상대적인 위치 정보가 효과적으로 반영될 수 있도록, 계층별로 영상의 고해상도의 표현이 그대로 유지되는 구조와 저해상도의 특징 지도로 변환되는 구조가 병렬적으로 연결되는 형태의 심층 신경망 모델을 채택하였다. 흉부 X-ray 영상에서 콥각도(Cobb's angle)를 산출하는 문제를 대상으로 흉추 분할을 위한 학습 방법, 진단지표 추출 방법 등을 소개하며, 부수적으로 피사체의 위치 변화 및 크기 변화 등에 강인한 성능을 제공하기 위하여 학습 데이터를 증강하는 방법론을 제시하였다. 총 145개의 영상을 사용한 실험을 통하여 제안된 이론의 타당성을 평가하였다.

Barcode Region of Interest Extraction Method Using a Local Pixel Directions in a Multiple Barcode Region Image (다중 바코드 영역을 가지는 영상에서 지역적 픽셀 방향성을 이용한 바코드 관심 영역 추출 방법)

  • Cho, Hosang;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2121-2128
    • /
    • 2015
  • In this paper presents a method of extracting reliable and regions of interest (ROI) in barcode for the purpose of factory automation. backgrounds are separated based on directional components and the characteristics of detected patterns. post-processing is performed on candidate images with analysis of problems caused by blur, rotation and areas of high similarity. In addition, the resizing factor is used to achieve faster calculations through image resizing. The input images contained multiple product or barcode for application to diverse automation environments; a high extraction success rate is accomplished despite the maximum shooting distance of 80 cm. Simulations involving images with various shooting distances gave an ROI detection rate of 100% and a post-processing success rate of 99.3%.

A Geographic Modeling System Using GIS and Real Images (GIS와 실영상을 이용한 지리 모델링 시스템)

  • 안현식
    • Spatial Information Research
    • /
    • v.12 no.2
    • /
    • pp.137-149
    • /
    • 2004
  • For 3D modelling artificial objects with computers, we have to draw frames and paint the facet images on each side. In this paper, a geographic modelling system building automatically 3D geographic spaces using GIS data and real images of buildings is proposed. First, the 3D model of terrain is constructed by using TIN and DEM algorithms. The images of buildings are acquired with a camera and its position is estimated using vertical lines of the image and the GIS data. The height of the building is computed with the image and the position of the camera, which used for making up the frames of buildings. The 3D model of the building is obtained by detecting the facet iamges of the building and texture mapping them on the 3D frame. The proposed geographical modeling system is applied to real area and shows its effectiveness.

  • PDF

Developing a Korean sentiment lexicon through BPE (BPE를 활용한 한국어 감정사전 제작)

  • Park, Ho-Min;Cheon, Min-Ah;Nam-Goong, Young;Choi, Min-Seok;Yoon, Ho;Kim, Jae-Kyun;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.510-513
    • /
    • 2019
  • 감정분석은 텍스트에서 나타난 저자 혹은 발화자의 태도, 의견 등과 같은 주관적인 정보를 추출하는 기술이며, 여론 분석, 시장 동향 분석 등 다양한 분야에 두루 사용된다. 감정분석 방법은 사전 기반 방법, 기계학습 기반 방법 등이 있다. 본 논문은 사전 기반 감정분석에 필요한 한국어 감정사전 자동 구축 방법을 제안한다. 본 논문은 영어 감정사전으로부터 한국어 감정사전을 자동으로 구축하는 방법이며, 크게 세 단계로 구성된다. 첫 번째는 한영 병렬 말뭉치를 이용한 한영 이중언어 사전을 구축하는 단계이고, 두 번째는 한영 이중언어 사전을 통한 한영 이중언어 그래프를 생성하는 단계이며, 세 번째는 영어 단어의 감정값을 한국어 BPE의 감정값으로 전파하는 단계이다. 본 논문에서는 제안된 방법의 유효성을 보이기 위해 사전 기반 한국어 감정분석 시스템을 구축하여 평가하였으며, 그 결과 제안된 방법이 합리적인 방법임을 확인할 수 있었으며 향후 연구를 통해 개선한다면 질 좋은 한국어 감정사전을 효과적인 방법으로 구축할 수 있을 것이다.

  • PDF

Research on Identifying Mutation-Drug Relationship in Biomedical Literature Using Biomedical Context based pre-trained word embedding (의생명과학 기반 기학습된 워드 임베딩을 이용한 의생명과학 논문 속의 돌연변이-약물 관계 추출 연구)

  • Kim, Hojun;Won, Seongyeon;Gang, Seungwoo;Lee, Kyubum;Kim, Byounggun;Kim, Sunkyu;Kang, Jaewoo
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.774-777
    • /
    • 2017
  • 의생명과학분야가 계속 발전됨에 따라 매일 평균 3천여 편에 달하는 방대한 양의 의생명과학분야 문헌들이 나오고 있다. 많은 연구가 진행될수록, 새로이 규명된 관계를 습득하고 체계화하는 일이 연구자와 의료계 종사자들에게 더 중요해지고 있다. 하지만 현재로서는 의생명과학분야에 어느 정도의 지식이 있는 사람이 직접 논문을 읽고 해당 논문에서 밝히고 있는 정보를 정리해야만 하는 상황이며, 이로는 기하급수적으로 쌓이는 정보의 양을 대처하기 어렵다. 이를 해결하기 위해 본 논문에서는 기계 학습을 통한 생명의료 객체관계 자동추출 연구를 이용하여 의생명과학분야의 정보를 체계화 하고자 한다. 본 논문에서는 돌연변이와 약물이 함께 등장하는 논문을 뽑아내어 글을 자연어 문장 단위로 나누었다. 추출한 돌연변이와 약물 간의 관계를 직접 사람에 의해 참거짓을 판명하였고, 해당 데이터셋을 기계학습에 이용하여 돌연변이와 약물 간의 관계를 학습시켰다. 최종적으로 GoogleNews의 기사들로 기학습된 워드임베딩, 의생명과학분야 문헌들을 이용하여 기학습된 워드임베딩을 이용하여 학습의 성능을 비교하였고, 의생명과학-문맥 특이적인 워드임베딩이 갖는 강점을 보고한다. 해당 연구를 통해 실제로 논문을 읽지 않고도 의생명과학분야 논문의 핵심적인 내용을 뽑아내는 자동화 시스템을 구축하는 데에 이바지하고, 의생명공학 연구자들의 연구에 핵심적인 도움이 되는 디딤돌이 되고자 한다.

Graph Topology Design for Generating Building Database and Implementation of Pattern Matching (건물 데이터베이스 구축을 위한 그래프 토폴로지 설계 및 패턴매칭 구현)

  • Choi, Hyo-Seok;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.5
    • /
    • pp.411-419
    • /
    • 2013
  • Research on developing algorithms for building modeling such as extracting outlines of the buildings and segmenting patches of the roofs using aerial images or LiDAR data are active. However, utilizing information from the building model is not well implemented yet. This study aims to propose a scheme for search identical or similar shape of buildings by utilizing graph topology pattern matching under the assumptions: (1) Buildings were modeled beforehand using imagery or LiDAR data, or (2) 3D building data from digital maps are available. Side walls, segmented roofs and footprints were represented as nodes, and relationships among the nodes were defined using graph topology. Topology graph database was generated and pattern matching was performed with buildings of various shapes. The results show that efficiency of the proposed method in terms of reliability of matching and database structure. In addition, flexibility in the search was achieved by altering conditions for the pattern matching. Furthermore, topology graph representation could be used as scale and rotation invariant shape descriptor.

Recognition of Car License Plates using Intensity Variation and Color Information (명암변화와 칼라정보를 이용한 차량 번호판 인식)

  • Kim, Pyeoung-Kee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3683-3693
    • /
    • 1999
  • Most recognition methods of car licence plate have difficulties concerning plate recognition rates and system stability in that restricted car images are used and good image capture environment is required. To overcome these difficulties, I proposed a new recognition method of car licence plates, in which both intensity variation and color information are used. For a captured car image, multiple candidate plate-bands are extracted based on the number of intensity variation. To have an equal performance on abnormally dark and bright Images. plate lightness is calculated and adjusted based on the brightness of plate background. Candidate plate regions are extracted using contour following on plate color pixels in oath plate band. A candidate region is decided as a real plate region after extracting character regions and then recognizing them. I recognize characters using template matching since total number of possible characters is small and they art machine printed. To show the efficiency of the proposed method, I tested it on 200 car images and found that the method shows good performance.

  • PDF

A Research on the Estimation Method for the SOC of the Lithium Batteries Using AC Impedance (AC 임피던스를 이용한 리튬 전지의 충전상태 추정에 관한 연구)

  • Lee, Jong-Hak;Kim, Sang-Hyun;Kim, Wook;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.457-465
    • /
    • 2009
  • Lithium batteries are widely used in mobile electronic devices due to their higher voltage and energy density, lighter weight and longer life cycle compared to other secondary batteries. In particular, high demand for lithium batteries is expected for electric cars. In case of lithium batteries used in electric cars, driving distance must be calculated accurately and discharging should not be done below the level of making it impossible to crank. Therefore, accurate information about state of charge (SOC) becomes an essential element for reliable driving. In this paper, a new method of estimating the SOC of lithium polymer batteries by using AC impedance is proposed. In the proposed method, parameters are extracted by fitting a curve of impedance measured at each frequency on the equivalent impedance model and extracted parameters are used to estimate SOC. Experiments were conducted on lithium polymer batteries with similar capacities made by different manufacturers to prove the validity of the proposed method.

Changes in antioxidant activity of Chrysanthemum indicum L. extract by Lactobacillus casei KCTC 3109 (Lactobacillus casei KCTC 3109에 의한 감국 추출물의 항산화능의 변화)

  • Lee, Ja-bok;Choi, Jae Young
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.5
    • /
    • pp.223-231
    • /
    • 2021
  • The antioxidant activity of Chrysanthemum indicum L. extract (CIL) was investigated by fermenting lactic acid bacteria with the CIL from 64% and 80% ethanol extraction and measuring the total phenolic contents (TPC), flavonoid, 2,2-diphenyl-1-picrylhydrazyl (DPPH), reducing power (RP), and linoleic acid auto-oxidation inhibitory activity. CIL was confirmed to inhibit bacterial auto-oxidation. TPC was increased in strains 3109 and 3237, while flavonoid decreased in all strains. DPPH was increased in strains 3074 and 3109 fermented with 64% CIL and all the strains with 80% CIL. RP was increased and linoleic acid auto-oxidation inhibitory activity decreased in all the strains fermented with 64% or 80% CIL. Among the 4 strains, strain 3109 had the highest DPPH and RP; thus, it was most effective in increasing CIL's antioxidant efficacy through the fermentation process.