• Title/Summary/Keyword: 자동정보 추출

Search Result 1,996, Processing Time 0.03 seconds

A Feature Selection Technique for an Efficient Document Automatic Classification (효율적인 문서 자동 분류를 위한 대표 색인어 추출 기법)

  • 김지숙;김영지;문현정;우용태
    • The Journal of Information Technology and Database
    • /
    • v.8 no.1
    • /
    • pp.117-128
    • /
    • 2001
  • Recently there are many researches of text mining to find interesting patterns or association rules from mass textual documents. However, the words extracted from informal documents are tend to be irregular and there are too many general words, so if we use pre-exist method, we would have difficulty in retrieving knowledge information effectively. In this paper, we propose a new feature extraction method to classify mass documents using association rule based on unsupervised learning technique. In experiment, we show the efficiency of suggested method by extracting features and classifying of documents.

  • PDF

사용자 추적, 인식을 위한 영상인식 기술개발 동향

  • Kim, Seung-Hun;Jeong, Il-Gyun;Park, Chang-U;Hwang, Jeong-Hun
    • ICROS
    • /
    • v.17 no.1
    • /
    • pp.18-24
    • /
    • 2011
  • 영상인식기술은 지능로봇 또는 지능형 홈이 하나 또는 다수의 영상정보를 이용하여 일상 생활 환경에서 대상 객체의 유무, 객체의 식별, 객체의 형상 추출, 객체의 위치 파악등을 자동으로 수행하는 기술을 통칭한다. 이러한 영상인식기술은 지능형 로봇과 지능형 홈, 지능형 안전시스템 등 앞으로 생활환경을 급속히 변화시킬 것으로 예상되는 첨단기기에서 가장 중요한 핵심기술이다.

A Study on Optimized Customer-Classification Algorithm Using Web-Mining from eCRM (eCRM에서 웹마이닝을 이용한 최적화된 고객분류 알고리즘에 관한 연구)

  • 이재훈;이성주
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.439-442
    • /
    • 2002
  • 고객을 중심으로 한 마케팅 기법중 하나인 고객관계관리(CRM : Customer Relationship Management)는 인터넷의 적용과 더불어 다양하게 발전하고 있는 분야 중 최근 가장 큰 이슈가 되고 있다. eCRU이란 CRM에서 인터넷을 이용해 기존의 시스템을 재구성하는 것을 말하는데 고객만족을 극대화하면서 동시에 관련 비용을 절감할 수 있는 새로운 고객관리라고 할 수 있다 본 논문은 웹 상의 고객 패턴을 마이닝을 통하여 고객 정보 추출을 최적화하는 알고리즘을 제시하고 이를 통해 고객분류를 자동으로 할 수 있음을 보였다.

자율운항지원을 위한 안전지원항로 제공 서비스

  • 남경태;김남수;서여진;김혜진;노유정
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.33-35
    • /
    • 2023
  • 자율운항선박의 항로계획정보와 주변선박의 항적 데이터를 기반으로 자율운항선박 주변의 위험선박을 자동으로 추출하고, 충돌위험지수를 산출하여, 위험지수에 따른 안전지원항로를 생성하여 자율운항선박에 제공하는 자율운항지원서비스 운영 소프트웨어 개발에 관한 연구이다.

  • PDF

An Automatic Pattern Recognition Algorithm for Identifying the Spatio-temporal Congestion Evolution Patterns in Freeway Historic Data (고속도로 이력데이터에 포함된 정체 시공간 전개 패턴 자동인식 알고리즘 개발)

  • Park, Eun Mi;Oh, Hyun Sun
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.5
    • /
    • pp.522-530
    • /
    • 2014
  • Spatio-temporal congestion evolution pattern can be reproduced using the VDS(Vehicle Detection System) historic speed dataset in the TMC(Traffic Management Center)s. Such dataset provides a pool of spatio-temporally experienced traffic conditions. Traffic flow pattern is known as spatio-temporally recurred, and even non-recurrent congestion caused by incidents has patterns according to the incident conditions. These imply that the information should be useful for traffic prediction and traffic management. Traffic flow predictions are generally performed using black-box approaches such as neural network, genetic algorithm, and etc. Black-box approaches are not designed to provide an explanation of their modeling and reasoning process and not to estimate the benefits and the risks of the implementation of such a solution. TMCs are reluctant to employ the black-box approaches even though there are numerous valuable articles. This research proposes a more readily understandable and intuitively appealing data-driven approach and developes an algorithm for identifying congestion patterns for recurrent and non-recurrent congestion management and information provision.

M2M Transformation Rules for Automatic Test Case Generation from Sequence Diagram (시퀀스 다이어그램으로부터 테스트 케이스 자동 생성을 위한 M2M(Model-to-Model) 변환 규칙)

  • Kim, Jin-a;Kim, Su Ji;Seo, Yongjin;Cheon, Eunyoung;Kim, Hyeon Soo
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.1
    • /
    • pp.32-37
    • /
    • 2016
  • In model-based testing using sequence diagrams, test cases are automatically derived from the sequence diagrams. For the generation of test cases, scenarios need to be found for representing as a sequence diagram, and to extract test paths satisfying the test coverage. However, it is hard to automatically extract test paths from the sequence diagram because a sequence diagram represents loop, opt, and alt information using CombinedFragments. To resolve this problem, we propose a transformation process that transforms a sequence diagram into an activity diagram which represents scenarios as a type of control flows. In addition, we generate test cases from the activity diagram by applying a test coverage concept. Finally, we present a case study for test cases generation from a sequence diagram.

RAUT: An End-to-End Tool for Automated Parsing and Uploading River Cross-sectional Survey in AutoCAD format to River Information System for Supporting HEC-RAS Operation (하천정비기본계획 CAD 형식 단면측량자료 자동 추출 및 하천공간 데이터베이스 업로딩과 HEC-RAS 지원을 위한 RAUT 툴 개발)

  • Kim, Kyungdong;you, Hojun;Kim, Dongsu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.75-75
    • /
    • 2020
  • 하천법에 의거하여 국내 하천들에는 상당한 국가예산으로 하천정비기본계획이 5-10년 주기로 수립되고 있으며, 홍수위 계산을 위한 HEC-RAS 모의에 필요한 하천단면 등 다양한 하천측량이 실시되고 있다. 그러나, 하천측량자료들은 하천관리지리정보시스템(RIMGIS)에 pdf 보고서 형태로만 제공되고, 원자료는 CAD 형식으로 하천정비계획을 수행한 설계사 등이 분산 소유하고 있어 관리부재로 망실의 우려도 있어, 다른 용도로의 활용성이 상당히 저하되어 있는 실정이다. 그리고, 측량된 CAD 형식의 단면자료 등을 HEC-RAS에 활용할 때, 'Dream'과 같은 툴을 활용하나 거의 수작업에 가까운 시간과 비용이 소요되는 현실에 있다. 본 연구에서는 이러한 문제들을 해결할 수 있는 툴인 RAUT(River information Auto Upload Tool)를 개발하였다., RAUT 툴은 첫째, 실무에서 하천기본계획 수립 시 활용되는 HEC-RAS 1차원 모형의 입력자료를 CAD 측량자료를 직접수기로 입력 및 모의를 실시하는 복잡한 단계를 자동화시키고자 하였다. 둘째, 하천공간정보인 CAD측량 자료를 직접 읽어 표준 데이터 모델 (Arc River)기반 하천공간정보 DB에 자동 업도드하여 전국단위의 하천정비계획의 하천측량자료 관리가 가능하게 할 수 있다. 즉, 만약 RIMGIS가 RAUT와 같은 툴을 사용하면 하천단면과 같은 전국단위 하천측량 자료를 체계적으로 관리할 수 있게 된다는 의미이다. 개발한 RAUT는 제주도 한천유역을 대상으로 하천정비기본계획의 하천공간정보 CAD자료를 읽어들여 mySQL기반 공간 DB로 구축하고, 구축된 DB로부터 HEC-RAS 1차원 모의 실시하기 위한 지형자료를 자동으로 생성시키는 과정을 시범적으로 구현하였다.

  • PDF

A Study on Progressive Sampling Method Using Contour Lines (등고선(等高線)을 이용(利用)한 표본추출법(標本抽出法)에 관한 연구(硏究))

  • Lee, Suk Chan;Shin, Bong Ho;Jung, Sung Ho;Cho, Young Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.67-73
    • /
    • 1985
  • In Digital Terrain Model(DTM), more accurate data acquisition method is of importance. This paper has the purpose of accuracy analysis of progressive sampling method, one of data acquisition method. Especially, The following in accuracy analysis are compared and analyzed. -Comparison and analysis for position error between the digital contour lines using digital terrain model and the conventional contour lines using A-10 Plotter. -Analysis for height error of interpolation points according to application of progressive sampling method. For above numerical tests, Computer Program related to auto-carto of contour lines was made up. As a result of tests, threshold and sampling criterion have close of mutual relation to accuracy. Particularly, it was found that auto-carto of contour lines-threshold of 1.0 m and standard criterion-almost concurred in conventional contour lines.

  • PDF

A Study on the Deduction of Social Issues Applying Word Embedding: With an Empasis on News Articles related to the Disables (단어 임베딩(Word Embedding) 기법을 적용한 키워드 중심의 사회적 이슈 도출 연구: 장애인 관련 뉴스 기사를 중심으로)

  • Choi, Garam;Choi, Sung-Pil
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.1
    • /
    • pp.231-250
    • /
    • 2018
  • In this paper, we propose a new methodology for extracting and formalizing subjective topics at a specific time using a set of keywords extracted automatically from online news articles. To do this, we first extracted a set of keywords by applying TF-IDF methods selected by a series of comparative experiments on various statistical weighting schemes that can measure the importance of individual words in a large set of texts. In order to effectively calculate the semantic relation between extracted keywords, a set of word embedding vectors was constructed by using about 1,000,000 news articles collected separately. Individual keywords extracted were quantified in the form of numerical vectors and clustered by K-means algorithm. As a result of qualitative in-depth analysis of each keyword cluster finally obtained, we witnessed that most of the clusters were evaluated as appropriate topics with sufficient semantic concentration for us to easily assign labels to them.

Music Genre Classification based on Musical Features of Representative Segments (대표구간의 음악 특징에 기반한 음악 장르 분류)

  • Lee, Jong-In;Kim, Byeong-Man
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.11
    • /
    • pp.692-700
    • /
    • 2008
  • In some previous works on musical genre classification, human experts specify segments of a song for extracting musical features. Although this approach might contribute to performance enhancement, it requires manual intervention and thus can not be easily applied to new incoming songs. To extract musical features without the manual intervention, most of recent researches on music genre classification extract features from a pre-determined part of a song (for example, 30 seconds after initial 30 seconds), which may cause loss of accuracy. In this paper, in order to alleviate the accuracy problem, we propose a new method, which extracts features from representative segments (or main theme part) identified by structure analysis of music piece. The proposed method detects segments with repeated melody in a song and selects representative ones among them by considering their positions and energies. Experimental results show that the proposed method significantly improve the accuracy compared to the approach using a pre-determined part.