• Title/Summary/Keyword: 자동정보 추출

Search Result 1,996, Processing Time 0.03 seconds

Automatic Tumor Segmentation Method using Symmetry Analysis and Level Set Algorithm in MR Brain Image (대칭성 분석과 레벨셋을 이용한 자기공명 뇌영상의 자동 종양 영역 분할 방법)

  • Kim, Bo-Ram;Park, Keun-Hye;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.267-273
    • /
    • 2011
  • In this paper, we proposed the method to detect brain tumor region in MR images. Our method is composed of 3 parts, detection of tumor slice, detection of tumor region and tumor boundary detection. In the tumor slice detection step, a slice which contains tumor regions is distinguished using symmetric analysis in 3D brain volume. The tumor region detection step is the process to segment the tumor region in the slice distinguished as a tumor slice. And tumor region is finally detected, using spatial feature and symmetric analysis based on the cluster information. The process for detecting tumor slice and tumor region have advantages which are robust for noise and requires less computational time, using the knowledge of the brain tumor and cluster-based on symmetric analysis. And we use the level set method with fast marching algorithm to detect the tumor boundary. It is performed to find the tumor boundary for all other slices using the initial seeds derived from the previous or later slice until the tumor region is vanished. It requires less computational time because every procedure is not performed for all slices.

Extraction of Sternocleidomastoid Muscle for Ultrasound Images of Cervical Vertebrae (경추 초음파 영상에서 흉쇄유돌근 추출)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2321-2326
    • /
    • 2011
  • Cervical vertebrae are a complex structure and an important part of human body connecting the head and the trunk. In this paper, we propose a method to extract sternocleidomastoid muscle from ultrasonography images of cervical vertabrae automatically. In our method, Region of Interests(ROI) is extracted first from an ultrasonography image after removing unnecessary auxiliary information such as metrics. Then we apply Ends-in search stretching algorithm in order to enhance the contrast of brightness. Average binarization is then applied to those pixels which its brightness is sufficiently large. The noise part is removed by image processing algorithms. After extracting fascia encloses sternocleidomastoid muscle, target muscle object is extracted using the location information of fascia according to the number of objects in the fascia. When only one object is to be extracted, we search downward first to extract the target muscle area and then search from right to left to extract the area and merge them. If there are two target objects, we extract first from the upper-bound of higher object to the lower-bound of lower object and then remove the fascia of the target object area. Smearing technique is used to restore possible loss of the fat area in the process. The thickness of sternocleidomastoid muscle is then calculated as the maximum thickness of those extracted objects. In this experiment with 30 real world ultrasonography images, the proposed method verified its efficacy and accuracy by health professionals.

Recognition of Passport Image Using Removing Noise Branches and Enhanced Fuzzy ART (잡영 가지 제거 알고리즘과 개선된 퍼지 ART를 이용한 여권 코드 인식)

  • Lee, Sang-Soo;Jang, Do-Won;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.377-382
    • /
    • 2005
  • 본 논문에서는 출입국자 관리의 효율성과 체계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하는 방법을 제안한다. 여권 이미지는 기울어진 상태로 스캔 되어 획득되어질 수도 있으므로 기울기 보정은 문자 분할 및 인식에 있어 매우 중요하다. 따라서 본 논문에서는 여권 영상을 스미어링한 후, 추출된 문자열 중에서 가장 긴 문자열을 선택하고 이 문자열의 좌측과 우측 부분의 두께 중심을 연결하는 직선과 수평선과의 기울기를 이용하여 여권 영상에 대한 각도 보정을 수행한다. 여권 코드 추출은 소벨 연산자와 수평 스미어링, 8방향 윤관선 추적 알고리즘을 적용하여 여권 코드의 문자열 영역을 추출하고, 추출된 여권 코드 문자열 영역에 대해 반복 이진화 방법을 적용하여 코드의 문자열 영역을 이진화 한다, 이진화된 문자열 영역에 대해 여권 코드의 인식율을 높이기 위하여 잡영 가지 제거 알고리즘을 적용하여 개별 문자의 잡영을 제거한 후에 개별 코드를 추출하며, CDM 마스크를 적용하여 추출된 개별코드를 복원한다. 추출된 개별코드는 개선된 퍼지 ART 알고리즘을 제안하여 인식에 적용한다. 실제 여권 영상을 대상으로 실험한 결과, CDM 마스크를 이용하여 추출된 개별 코드를 개선된 퍼지 ART 알고리즘을 적용하여 인식한 방법보다 잡영 제거 알고리즘과 CDM 마스크를 적용하여 개선된 퍼지 ART 알고리즘으로 개별 코드를 인식하는 것이 효율적인 것을 확인하였다. 그리고 기존의 퍼지 ART 알고리즘을 이용하여 개별 코드를 인식하는 경우보다 본 논문에서 제안한 개선된 퍼지 ART 알고리즘을 이용하여 개별 코드를 인식하는 경우가 서로 다른 패턴들이 같은 클러스터로 분류되지 않아 인식 성능이 개선되었다.생산하고 있다. 또한 이러한 자료를 바탕으로 지역통계 수요에 즉각 대처할 수 있다. 더 나아가 이와 같은 통계는 전 국민에 대한 패널자료이기 때문에 통계적 활용의 범위가 방대하다. 특히 개인, 가구, 사업체 등 사회 활동의 주체들이 어떻게 변화하는지를 추적할 수 있는 자료를 생산함으로써 다양한 인과적 통계분석을 할 수 있다. 행정자료를 활용한 인구센서스의 이러한 특징은 국가의 교육정책, 노동정책, 복지정책 등 다양한 정책을 정확한 자료를 근거로 수립할 수 있는 기반을 제공한다(Gaasemyr, 1999). 이와 더불어 행정자료 기반의 인구센서스는 비용이 적게 드는 장점이 있다. 예를 들어 덴마크나 핀란드에서는 조사로 자료를 생산하던 때의 1/20 정도 비용으로 행정자료로 인구센서스의 모든 자료를 생산하고 있다. 특히, 최근 모든 행정자료들이 정보통신기술에 의해 데이터베이스 형태로 바뀌고, 인터넷을 근간으로 한 컴퓨터네트워크가 발달함에 따라 각 부처별로 행정을 위해 축적한 자료를 정보통신기술로 연계${cdot}$통합하면 막대한 조사비용을 들이지 않더라도 인구센서스자료를 적은 비용으로 생산할 수 있는 근간이 마련되었다. 이렇듯 행정자료 기반의 인구센서스가 많은 장점을 가졌지만, 그렇다고 모든 국가가 당장 행정자료로 인구센서스를 대체할 수 있는 것은 아니다. 행정자료로 인구센서스통계를 생산하기 위해서는 각 행정부서별로 사용하는 행정자료들을 연계${cdot}$통합할 수 있도록 국가사회전반에 걸쳐 행정 체제가 갖추어져야 하기 때문이다. 특히 모든 국민 개개인에 관한 기본정보, 개인들이 거주하며 생활하는 단위인 개별 주거단위에 관한 정보가 행정부에 등록되어

  • PDF

A Study of Relationship Derivation Technique using object extraction Technique (개체추출기법을 이용한 관계성 도출기법)

  • Kim, Jong-hee;Lee, Eun-seok;Kim, Jeong-su;Park, Jong-kook;Kim, Jong-bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.309-311
    • /
    • 2014
  • Despite increasing demands for big data application based on the analysis of scattered unstructured data, few relevant studies have been reported. Accordingly, the present study suggests a technique enabling a sentence-based semantic analysis by extracting objects from collected web information and automatically analyzing the relationships between such objects with collective intelligence and language processing technology. To be specific, collected information is stored in DBMS in a structured form, and then morpheme and feature information is analyzed. Obtained morphemes are classified into objects of interest, marginal objects and objects of non-interest. Then, with an inter-object attribute recognition technique, the relationships between objects are analyzed in terms of the degree, scope and nature of such relationships. As a result, the analysis of relevance between the information was based on certain keywords and used an inter-object relationship extraction technique that can determine positivity and negativity. Also, the present study suggested a method to design a system fit for real-time large-capacity processing and applicable to high value-added services.

  • PDF

A Statistical Approach for Extracting and Miming Relation between Concepts (개념간 관계의 추출과 명명을 위한 통계적 접근방법)

  • Kim Hee-soo;Choi Ikkyu;Kim Minkoo
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.479-486
    • /
    • 2005
  • The ontology was proposed to construct the logical basis of semantic web. Ontology represents domain knowledge in the formal form and it enables that machine understand domain knowledge and provide appropriate intelligent service for user request. However, the construction and the maintenance of ontology requires large amount of cost and human efforts. This paper proposes an automatic ontology construction method for defining relation between concepts in the documents. The Proposed method works as following steps. First we find concept pairs which compose association rule based on the concepts in domain specific documents. Next, we find pattern that describes the relation between concepts by clustering the context between two concepts composing association rule. Last, find generalized pattern name by clustering the clustered patterns. To verify the proposed method, we extract relation between concepts and evaluate the result using documents set provide by TREC(Text Retrieval Conference). The result shows that proposed method cant provide useful information that describes relation between concepts.

Extractiong mood metadata through sound effects of video (영상의 효과음을 통한 분위기 메타데이터 추출)

  • You, Yeon-Hwi;Park, Hyo-Gyeong;Yong, Sung-Jung;Lee, Seo-Young;Moon, Il-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.453-455
    • /
    • 2022
  • Metadata is data that explains attributes and features to the data as structured data. Among them, video metadata refers to data extracted from information constituting the video for accurate content-based search. Recently, as the number of users using video content increases, the number of OTT providers is also increasing, and the role of metadata is becoming more important for OTT providers to recommend a large amount of video content to individual users or to search appropriately. In this paper, a study was conducted on a method of automatically extracting metadata for mood attributes through sound effects of images. In order to classify the sound effect of the video and generate metadata about the attributes of the mood, I would like to propose a method of establishing a terminology dictionary for the mood and extracting information through supervised learning.

  • PDF

3-D Building Reconstruction from Standard IKONOS Stereo Products in Dense Urban Areas (IKONOS 컬러 입체영상을 이용한 대규모 도심지역의 3차원 건물복원)

  • Lee, Suk Kun;Park, Chung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.535-540
    • /
    • 2006
  • This paper presented an effective strategy to extract the buildings and to reconstruct 3-D buildings using high-resolution multispectral stereo satellite images. Proposed scheme contained three major steps: building enhancement and segmentation using both BDT (Background Discriminant Transformation) and ISODATA algorithm, conjugate building identification using the object matching with Hausdorff distance and color indexing, and 3-D building reconstruction using photogrammetric techniques. IKONOS multispectral stereo images were used to evaluate the scheme. As a result, the BDT technique was verified as an effective tool for enhancing building areas since BDT suppressed the dominance of background to enhance the building as a non-background. In building recognition, color information itself was not enough to identify the conjugate building pairs since most buildings are composed of similar materials such as concrete. When both Hausdorff distance for edge information and color indexing for color information were combined, most segmented buildings in the stereo images were correctly identified. Finally, 3-D building models were successfully generated using the space intersection by the forward RFM (Rational Function Model).

Evaluation Method of Machine Translation System (기계번역 성능평가를 위한 핵심어 전달율 측정방안)

  • Yu, Cho-Rong;Lee, Young-Jik;Park, Jun
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.241-245
    • /
    • 2003
  • 본 논문은 기계번역 시스템의 성능평가를 위한 '핵심어 전달율 측정' 방안에 대해서 기술한다. 기계번역 시스템의 성능평가는 두 가지 측면으로 고려될 수 있다. 첫 번째는 객관적인 평가로 IBM에서 주창한 BLEU score 측정이나 NIST의 NIST score 측정이 그 예이다. 객관적인 평가는 평가자의 주관적인 판단이나 언어적인 특성을 배제한 방법으로 프로그램을 통해 자동으로 fluency와 adequacy를 측정하여 성능을 평가한다. 다음은 주관적인 평가이다. 주관적인 평가는 평가자의 평가를 통해 번역의 품질을 평가하는 방법이다. 주관적 평가 방법의 대표적인 것으로는 NESPOLE이나 LDC가 있다. 주관적인 평가는 평가자의 정확한 판단으로 신뢰할만한 성능평가 결과를 도출하지만, 시간과 비용이 많이 들고, 재사용할 수 없다는 단점이 있다. 본 논문에서는 이러한 문제를 해결하기 위해, 번역대상 문장에서 핵심어를 추출하고, 그 핵심어가 기계번역 시스템의 수행결과에 전달된 정도를 자동으로 측정하는 새로운 평가방법인 '핵심어 전달율 측정' 방안을 제안한다. 이는 성능평가의 비용과 시간을 절약하고, 주관적 평가와 유사한 신뢰성 있는 평가결과를 얻을 수 있는 좋은 지표가 될 수 있을 것으로 기대한다.

  • PDF

Distributed Genetic Algorithm using Automatic Migration Control (분산 유전 알고리즘에서 자동 마이그레이션 조절방법)

  • Lee, Hyun-Jung;Na, Yong-Chan;Yang, Ji-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.17B no.2
    • /
    • pp.157-162
    • /
    • 2010
  • We present a new distributed genetic algorithm that can be used to extract useful information from distributed, large data over the network. The main idea of the proposed algorithms is to determine how many and which individuals move between subpopulations at each site adaptively. In addition, we present a method to help individuals from other subpopulations not be weeded out but adapt to the new subpopulation. We used six data sets from UCI Machine Learning Repository to compare the performance of our approach with that of the single, centralized genetic algorithm. As a result, the proposed algorithm produced better performance than the single genetic algorithm in terms of the classification accuracy with the feature subsets.

Question and Answering System through Search Result Summarization of Q&A Documents (Q&A 문서의 검색 결과 요약을 활용한 질의응답 시스템)

  • Yoo, Dong Hyun;Lee, Hyun Ah
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.4
    • /
    • pp.149-154
    • /
    • 2014
  • A user should pick up relevant answers by himself from various search results when using user participation question answering community like Knowledge-iN. If refined answers are automatically provided, usability of question answering community must be improved. This paper divides questions in Q&A documents into 4 types(word, list, graph and text), then proposes summarizing methods for each question type using document statistics. Summarized answers for word, list and text type are obtained by question clustering and calculating scores for words using frequency, proximity and confidence of answers. Answers for graph type is shown by extracting user opinion from answers.