Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
/
2003.04a
/
pp.334-339
/
2003
위성 영상의 활용범위가 확대되면서 다양한 위성 센서로부터 위성영상이 제공되고 있다. 특히 최근에는 이기종 센서로부터 서로 다른 시간과 분광정보를 가진 영상의 자동 등록이 영상자료 분석을 위해 필요한 기술로 인식되고 있다. 본 연구에서는 Kompsat 영상과 Radarsat 영상을 이용하여 두 영상에서 공통으로 존재하는 패치(Patch)를 추출하고 그 패치의 중심점을 찾아 매칭하는 방법에 기초를 둔 자동영상 등록 기법을 제시하였다. 밝기 값분석을 통해 패치를 추출하고 추출된 패치를 모폴로지(Morphology)기법과 잡음요소 제거 기법을 적용하여 패치에 포함된 잡음을 제거하였으며, 비용함수를 이용한 패치 매칭과 변환함수를 이용하여 자동영상등록을 실시하였다.
인터넷의 급속한 발달로 사용자는 자신의 질의에 적합한 검색결과를 빠르고 정확하게 보장하는 검색도구를 요구하게 되었다. 이러한 사용자의 요구는 검색도구의 성능향상에 필수적인 문서의 내용을 대표하는 색인어를 추출하는 색인 시스템에 대한 관심을 가지게 되었다. 기존의 한국어에서의 자동 색인 방법에는 어절 중심 색인법, 형태소 중심 색인법과 최근에 n-gram 중심 색인법 등이 주류를 이루어 왔다. 그러나 한국어에서 색인어를 추출하는 기존의 방법은 복합명사의 색인과 복잡한 문법적 지식이 필요하고 잘못된 색인어를 추출하는 등의 검색효율에 문제점을 가지고 있다. 본 논문에서는 PDA를 이용한 정형화된 한국어와 영어문장의 자동 색인 방법을 제안한다. 제안하는 방법은 별도의 사전지식이 필요하지 않고 단일 명사와 복합명사의 색인이 가능하며 인터넷으로의 확장과 다양한 언어로 확장성이 좋은 장점 등을 갖는다. 성능 평가로써 한국통신의 KTSET으로 MS사의 IIS를 웹 서버로 ASP를 이용하여 인터넷 환경에서 테스트를 통하여 한국어 뿐 아니라 영어문장의 정형화되고 이용이 간편한 자동색인 결과를 보여준다.
Temporal information plays an important role in natural language processing (NLP) applications such as information extraction, discourse analysis, automatic summarization, and question-answering. In the topic detection and tracking (TDT) area, the temporal information often used is the publication date of a message, which is readily available but limited in its usefulness. We developed a relatively simple NLP method of extracting temporal information from Korean news articles, with the goal of improving performance of TDT tasks. To extract temporal information, we make use of finite state automata and a lexicon containing time-revealing vocabulary. Extracted information is converted into a canonicalized representation of a time point or a time duration. We first evaluated the extraction and canonicalization methods for their accuracy and investigated on the extent to which temporal information extracted as such can help TDT tasks. The experimental results show that time information extracted from text indeed helps improve both precision and recall significantly.
Annual Conference on Human and Language Technology
/
2012.10a
/
pp.154-156
/
2012
영한 기계번역 시스템의 개발을 위해서는 여러 가지 사전이 필요하고, 다앙한 모호성 해소를 위한 연구를 위한 데이터가 필요하며, 번역 시스템의 테스트를 위해 많은 영어 문장이 필요하다. 따라서 영어 말뭉치를 구축하여 이로부터 사전에 필요한 정보, 모호성 해소 연구에 필요한 데이터, 번역 테스트를 위한 문장 등을 추출할 필요가 있다. 본 논문에서는 영어 말뭉치를 구축하기 위해 인터넷 영어 신문 사이트로부터 영어로 작성된 신문기사를 추출하는 도구를 개발하였다. 이를 통해 자동적으로 영어 신문기사를 추출하여 말뭉치를 구축할 수 있으며, 이를 통해 영한 기계번역 시스템의 성능 향상을 지원할 수 있다.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.508-510
/
2001
3차원 물체의 인식과 공간 정보를 추출해 내는 것이 물체인식의 주요 목적이다. 본 논문에서는 평면의 표면을 갖는 기하학적 물체들을 인식하는데 인공신경망이 적용 가능함이 조사되었다. 물체인식을 위한 모델들은 CAD모델들로부터 자동적으로 추출되며, 획득된 물체의 영상과 일치하는 물체의 국면(aspect)과의 매칭은 조건만족 인경신경망을 이용하여 매칭-오차를 최소화시키는 방법을 처리되었다. 인식된 물체의 국면이 어느 방향에서 획득되었는지에 대한 정보(Aspect's view direction)는 검색된 가시 평면들의 분포로부터 추출됨을 ART와 같은 인공신경망을 이용하여 실시간으로 복원할 수 있음을 보였다. 대표적이 측정방향과 이 측정방향으로부터의 편차들을 한 범주에 넣고 학습을 통해 정확한 측정방향 정보들을 구하며, 획득된 3차원 물체의 영상들에 따라 자동적으로 측정방향범주 들이 추가되도록 한다.
Annual Conference on Human and Language Technology
/
2014.10a
/
pp.73-77
/
2014
문장을 대상으로 특정 응용 분야에 필요한 요소를 자동으로 추출하는 정보 추출(information extraction) 과제는 자연어 처리 및 텍스트 마이닝의 중요한 과제 중 하나이다. 특히 추출해야할 요소가 한 단어가 아닌 여러 단어로 구성된 경우 추출 과정에서 고려되어야할 부분이 크게 증가한다. 또한 추출 대상이 되는 요소의 유형 또한 여러 가지인데, 감정 분석 분야를 예로 들면 화자, 객체, 속성 등 여러 유형의 요소에 대한 분석이 필요하며, 비교 마이닝 분야를 예로 들면 비교 주체, 비교 상대, 비교 술어 등의 요소에 대한 분석이 필요하다. 본 논문에서는 각각 여러 단어로 구성될 수 있는 여러 유형의 요소를 동시에 추출하는 방법을 제안한다. 제안 방법은 구현이 매우 간단하다는 장점을 가지는데, 필요한 과정은 형태소 부착과 변환 기반 학습(transformation-based learning) 두 가지이며, 파싱 혹은 청킹 같은 별도의 전처리 과정도 거치지 않는다. 평가를 위해 제안 방법을 적용하여 비교 마이닝을 수행하였는데, 비교 문장으로부터 각자 여러 단어로 구성될 수 있는 세 가지 유형의 비교 요소를 자동 추출하였으며, 실험 결과 정확도 84.33%의 우수한 성능을 산출하였다.
Journal of the Korean Society for information Management
/
v.23
no.2
/
pp.167-183
/
2006
This paper describes a metadata extraction technique based on natural language processing (NLP) which extracts personalized information from email communications between financial analysts and their clients. Personalized means connecting users with content in a personally meaningful way to create, grow, and retain online relationships. Personalization often results in the creation of user profiles that store individuals' preferences regarding goods or services offered by various e-commerce merchants. We developed an automatic metadata extraction system designed to process textual data such as emails, discussion group postings, or chat group transcriptions. The focus of this paper is the recognition of emotional contents such as mood and urgency, which are embedded in the business communications, as metadata.
Journal of the Korean Society for information Management
/
v.40
no.2
/
pp.115-135
/
2023
The purpose of this study is to assess the effectiveness of using deep learning language models to extract references automatically and create a reference database for research reports in an efficient manner. Unlike academic journals, research reports present difficulties in automatically extracting references due to variations in formatting across institutions. In this study, we addressed this issue by introducing the task of separating references from non-reference phrases, in addition to the commonly used metadata extraction task for reference extraction. The study employed datasets that included various types of references, such as those from research reports of a particular institution, academic journals, and a combination of academic journal references and non-reference texts. Two deep learning language models, namely RoBERTa+CRF and ChatGPT, were compared to evaluate their performance in automatic extraction. They were used to extract metadata, categorize data types, and separate original text. The research findings showed that the deep learning language models were highly effective, achieving maximum F1-scores of 95.41% for metadata extraction and 98.91% for categorization of data types and separation of the original text. These results provide valuable insights into the use of deep learning language models and different types of datasets for constructing reference databases for research reports including both reference and non-reference texts.
텍스트 자동 요약은 수많은 텍스트 데이터를 처리함에 있어 중요한 연구 분야이다. 이중 추출요약은 현재 가장 많이 연구가 되고 있는 자동 요약 분야이다. 본 논문은 추출 요약의 선두 연구인 TextRank는 문장 간 유사도를 계산할 때 문장 내 단어 간의 의미적 유사성을 충분히 고려하지 못하였다. 본 연구에서는 의미적 유사성을 고려한 새로운 단어 간 유사도 측정 방법을 제안한다. 추출된 문장 간 유사도는 그래프로 표현되며, TextRank의 랭킹 알고리즘과 동일한 랭킹 알고리즘을 사용하여 실험적으로 평가하였다. 그 결과 문장 간 유사성을 고려할 때 단어의 의미적 요소를 충분히 고려하여 정보의 유실을 최소화하여야 한다는 것을 실험 결과로써 확인할 수 있었다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.596-599
/
2022
심층 학습은 지속적으로 발전하고 있으며, 최근에는 실제 사용자에게 제공되는 애플리케이션까지 확장되고 있다. 특히 자연어처리 분야에서는 대용량 언어 말뭉치를 기반으로 한 언어모델이 등장하면서 사람보다 높은 성능을 보이는 시스템이 개발되었다. 그러나 언어모델은 높은 컴퓨팅 파워를 요구하기 때문에 독립적인 소형 디바이스에서 제공할 수 있는 서비스에 적용하기 힘들다. 예를 들어 스캐너에서 제공할 수 있는 파일명 자동 부착 서비스는 하드웨어의 컴퓨팅 파워가 제한적이기 때문에 언어모델을 적용하기 힘들다. 또한, 활용할 수 있는 공개 데이터가 많지 않기 때문에, 데이터 구축에도 높은 비용이 요구된다. 따라서 본 논문에서는 컴퓨팅 파워에 비교적 독립적이고 학습 데이터가 필요하지 않은 비지도 학습을 활용하여 파일명 자동 부착 서비스를 위한 파일명 추출 방법을 제안한다. 실험은 681건의 문서 OCR 결과에 정답을 부착하여 수행했으며, ROUGE-L 기준 0.3352의 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.