• 제목/요약/키워드: 자동생성시스템

검색결과 1,500건 처리시간 0.027초

KOMUChat : 인공지능 학습을 위한 온라인 커뮤니티 대화 데이터셋 연구 (KOMUChat: Korean Online Community Dialogue Dataset for AI Learning)

  • 유용상;정민화;이승민;송민
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.219-240
    • /
    • 2023
  • 사용자가 만족감을 느끼며 상호작용할 수 있는 대화형 인공지능을 개발하기 위한 노력이 이어지고 있다. 대화형 인공지능 개발을 위해서는 사람들의 실제 대화를 반영한 학습 데이터를 구축하는 것이 필요하지만, 기존 데이터셋은 질문-답변 형식이 아니거나 존대어를 사용하여 사용자가 친근감을 느끼기 어려운 문체로 구성되어 있다. 이에 본 논문은 온라인 커뮤니티에서 수집한 30,767개의 질문-답변 문장 쌍으로 구성된 대화 데이터셋(KOMUChat)을 구축하여 제안한다. 본 데이터셋은 각각 남성, 여성이 주로 이용하는 연애상담 게시판의 게시물 제목과 첫 번째 댓글을 질문-답변으로 수집하였다. 또한, 자동 및 수동 정제 과정을 통해 혐오 데이터 등을 제거하여 양질의 데이터셋을 구축하였다. KOMUChat의 타당성을 검증하기 위해 언어 모델에 본 데이터셋과 벤치마크 데이터셋을 각각 학습시켜 비교분석하였다. 그 결과 답변의 적절성, 사용자의 만족감, 대화형 인공지능의 목적 달성 여부에서 KOMUChat이 벤치마크 데이터셋의 평가 점수를 상회했다. 본 연구는 지금까지 제시된 오픈소스 싱글턴 대화형 텍스트 데이터셋 중 가장 대규모의 데이터이며 커뮤니티 별 텍스트 특성을 반영하여 보다 친근감있는 한국어 데이터셋을 구축하였다는 의의를 가진다.

뮤직비디오 브라우징을 위한 중요 구간 검출 알고리즘 (Salient Region Detection Algorithm for Music Video Browsing)

  • 김형국;신동
    • 한국음향학회지
    • /
    • 제28권2호
    • /
    • pp.112-118
    • /
    • 2009
  • 본 논문은 모바일 단말기, Digital Video Recorder (DVR) 등에 적용할 수 있는 뮤직비디오 브라우징 시스템을 위한 실시간 중요 구간 검출 알고리즘을 제안한다. 입력된 뮤직비디오는 음악 신호와 영상 신호로 분리되어 음악 신호에서는 에너지기반의 음악 특징값 최고점기반의 구조분석을 통해 음악의 후렴 구간을 포함하는 음악 하이라이트 구간을 검출하고, SVM AdaBoost 학습방식에서 생성된 모델을 이용해 음악신호를 분위기별로 자동 분류한다. 음악신호로부터 검출된 음악 하이라이트 구간과 영상신호로부터 검출된 가수, 주인공의 얼굴이 나오는 영상장면을 결합하여 최종적으로 중요구간이 결정된다. 제안된 방식을 통해 사용자는 모바일 단말기나 DVR에 저장되어 있는 다양한 뮤직비디오들을 분위기별로 선택한 후에 뮤직비디오의 30초 내외의 중요구간을 빠르게 브라우징하여 자신이 원하는 뮤직비디오를 선택할 수 있게 된다. 제안된 알고리즘의 성능을 측정하기 위해 200개의 뮤직비디오를 정해진 수동 뮤직비디오 구간과 비교하여 MOS 테스트를 실행한 결과 제안된 방식에서 검출된 중요 구간이 수동으로 정해진 구간보다 사용자 만족도 측면에서 우수한 결과를 나타내었다.

사전과 말뭉치를 이용한 한국어 단어 중의성 해소 (Korean Word Sense Disambiguation using Dictionary and Corpus)

  • 정한조;박병화
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.1-13
    • /
    • 2015
  • 빅데이터 및 오피니언 마이닝 분야가 대두됨에 따라 정보 검색/추출, 특히 비정형 데이터에서의 정보 검색/추출 기술의 중요성이 나날이 부각되어지고 있다. 또한 정보 검색 분야에서는 이용자의 의도에 맞는 결과를 제공할 수 있는 검색엔진의 성능향상을 위한 다양한 연구들이 진행되고 있다. 이러한 정보 검색/추출 분야에서 자연어처리 기술은 비정형 데이터 분석/처리 분야에서 중요한 기술이고, 자연어처리에 있어서 하나의 단어가 여러개의 모호한 의미를 가질 수 있는 단어 중의성 문제는 자연어처리의 성능을 향상시키기 위해 우선적으로 해결해야하는 문제점들의 하나이다. 본 연구는 단어 중의성 해소 방법에 사용될 수 있는 말뭉치를 많은 시간과 노력이 요구되는 수동적인 방법이 아닌, 사전들의 예제를 활용하여 자동적으로 생성할 수 있는 방법을 소개한다. 즉, 기존의 수동적인 방법으로 의미 태깅된 세종말뭉치에 표준국어대사전의 예제를 자동적으로 태깅하여 결합한 말뭉치를 사용한 단어 중의성 해소 방법을 소개한다. 표준국어대사전에서 단어 중의성 해소의 주요 대상인 전체 명사 (265,655개) 중에 중의성 해소의 대상이 되는 중의어 (29,868개)의 각 센스 (93,522개)와 연관된 속담, 용례 문장 (56,914개)들을 결합 말뭉치에 추가하였다. 품사 및 센스가 같이 태깅된 세종말뭉치의 약 79만개의 문장과 표준국어대사전의 약 5.7만개의 문장을 각각 또는 병합하여 교차검증을 사용하여 실험을 진행하였다. 실험 결과는 결합 말뭉치를 사용하였을 때 정확도와 재현율에 있어서 향상된 결과가 발견되었다. 본 연구의 결과는 인터넷 검색엔진 등의 검색결과의 성능향상과 오피니언 마이닝, 텍스트 마이닝과 관련한 자연어 분석/처리에 있어서 문장의 내용을 보다 명확히 파악하는데 도움을 줄 수 있을 것으로 기대되어진다.

종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템 (A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings)

  • 구민정;안현철
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.85-109
    • /
    • 2018
  • 추천시스템은 사용자의 과거 구매행동을 통해 향후 구매할 것이라고 예상되는 제품을 자동으로 검색하여 추천해준다. 특히 전자상거래 기업의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로 가치가 있다. 하지만, 전통적인 추천시스템, 특히 학계 및 산업계에서 가장 널리 사용되고 있는 전통적인 협업필터링 기법은 단일차원의 '종합 평점'만을 고려하여 추천결과를 생성하도록 설계되어 있어, 사용자들의 정확한 니즈를 이해하고 대응하는데 근본적인 한계가 있다. 최근에는 전자 상거래 기업들도 고객들로부터 보다 다각화된, 다기준 방식으로 피드백을 받고 있다. 특히 다기준 평점은 정량적으로 입력되는 정보이므로 상대적으로 분석 및 처리가 용이하다는 장점이 있다. 그러나 다기준 평점 역시 사전에 정해진 기준에 대해서만 사용자의 피드백이 이루어지기 때문에, 보다 상세하게 사용자의 의견을 이해하여 추천에 반영하는 데에는 한계가 있다. 이에 본 연구는 다기준 평점 정보와 선택적 협업필터링의 서로 다른 접근방법을 통해 도출된 추천결과를 종합하여, 최종적으로 추천 대상리스트를 산출할 수 있는 하이브리드 기술을 제안한다. 본 연구에서 제안한 연구모형의 유용성을 검증하기 위해, 식음료점(식당, 카페 등)에 대한 실제 이용자를 대상으로 온라인 설문을 통해 종합 평점과 다기준 평점을 수집하였으며, 데이터를 학습용과 검증용으로 구분하여 학습시키고 성과를 평가하였다. 이 기법은 결합 함수 기반 접근법과 사용자마다 구매의사결정의 체계가 다르다는 전제하에, 사용자들을 유형화하고, 유형에 따라 정보원을 선택적으로 활용하는 협업필터링 알고리즘을 활용했다. 실험결과, 제안 알고리즘을 통한 추천 방법이 단일 차원을 고려하는 전통적인 협업필터링과 비교해 더 우수한 예측정확도를 나타냄을 확인했다. 아울러, 본 연구가 제안하는 다기준 평점과 선택적 협업필터링 알고리즘을 종합하여 추천하는 방법이, 단순히 다기준 평점을 고려했을 때 보다 통계적으로 유의한 수준의 정확도의 개선이 이루어짐을 확인할 수 있었다.

마켓 인사이트를 위한 상품 리뷰의 다차원 분석 방안 (Multi-Dimensional Analysis Method of Product Reviews for Market Insight)

  • 박정현;이서호;임규진;여운영;김종우
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.57-78
    • /
    • 2020
  • 인터넷의 발달로, 소비자들은 이커머스에서 손쉽게 상품 정보를 확인한다. 이때 활용되는 상품 리뷰는 사용자 경험을 토대로 작성되어 구매의사결정의 효율성을 높일 뿐만 아니라 상품 개발에 도움을 주기도 한다. 하지만, 방대한 양의 상품 리뷰에서 관심있는 평가차원의 세부내용을 파악하는 데에는 많은 시간과 노력이 소비된다. 예를 들어, 노트북을 구매하려는 소비자들은 성능, 무게, 디자인과 같은 평가차원에 대해 각 차원별로 비교 상품의 평가를 확인하고자 한다. 따라서 본 논문에서는 상품 리뷰에서 다차원 상품평가 점수를 자동적으로 생성하는 방안을 제안하고자 한다. 본 연구에서 제시하는 방안은 크게 2단계로 구성된다. 사전준비 단계와 개별상품평가 단계로, 대분류 상품군 리뷰를 토대로 사전에 생성된 차원분류모델과 감성분석모델이 개별상품의 리뷰를 분석하게 된다. 차원분류모델은 워드임베딩과 연관분석을 결합함으로써 기존 연구에서 차원과 단어들의 관련성을 찾기 위한 워드임베딩 방식이 문장 내 단어의 위치만을 본다는 한계를 보완한다. 감성분석모델은 정확한 극성 판단을 위해 구(phrase) 단위로 긍부정이 태깅된 학습데이터를 구성하여 CNN 모델을 생성한다. 이를 통해, 개별상품평가 단계에서는 구 단위의 리뷰에 준비된 모델들을 적용하고 평가차원별로 종합함으로써 다차원 평가점수를 얻을 수 있다. 본 논문의 실험에서는 대분류 상품군 리뷰 약 260,000건으로 평가모델을 구성하고, S사와 L사의 노트북 리뷰 각 1,011건과 1,062건을 실험데이터로 활용한다. 차원분류모델은 구로 분해한 개별상품 리뷰를 6개 평가차원으로 분류했고, 기존 워드임베딩 방식보다 연관분석을 결합한 모델의 정확도가 13.7% 증가했음을 볼 수 있었다. 감성분석모델은 문장보다 구 단위로 학습한 모델이 평가차원을 면밀히 분석함으로써 29.4% 더 높은 정확도를 보임을 확인했다. 본 연구를 통해 판매자, 소비자 모두가 상품의 다차원적 비교가 가능하다는 점에서 구매 및 상품 개발에 효율적인 의사결정을 기대할 수 있다.

ART2 기반 RBF 네트워크와 얼굴 인증을 이용한 주민등록증 인식 (Recognition of Resident Registration Card using ART2-based RBF Network and face Verification)

  • 김광백;김영주
    • 지능정보연구
    • /
    • 제12권1호
    • /
    • pp.1-15
    • /
    • 2006
  • 우리나라의 주민등록증은 주소지, 주민등록번호, 얼굴사진, 지문 등 개인의 다양한 정보를 가진다. 현재의 플라스틱형 주민등록증은 위조 및 변조가 쉽고 그 수법이 날로 전문화 되어가고 있다. 따라서 육안으로 위조 및 변조 사실을 쉽게 확인하기가 어려워 사회적으로 문제를 일으키고 있다. 이에 본 논문에서는 개선된 ART2 기반 RBF 네트워크에 이용한 주민등록번호 인식과 얼굴 인증을 통한 주민등록증 자동 인식 방법을 제안한다. 제안된 방법은 주민등록증 영상으로부터 주민등록번호와 발행일을 추출하기 위하여 주민등록증 영상에 소벨 마스킹와 미디언 필터링을 적용한 후에 수평 스미어링을 적용하여 주민등록번호와 발행일 영역을 추출한다. 그리고 원영상에 대해 고주파 필터링을 적용하여 영상 전체를 이진화하고, 이진화된 영상에 CDM 마스크를 적용하여 주민등록번호와 발행일 코드를 복원한 다음, 검출된 각 영역에 대해 4-방향 윤곽선 추적 알고리즘을 적용하여 개별 문자를 추출한다. 추출된 주민등록번호 등의 개별 문자를 인식하기 위해 개선된 ART2 기반 RBF 네트워크를 제안하고 인식에 적용한다. 제안된 ART2 기반 RBF 네트워크는 학습 성능을 개선하기 위하여 중간층과 출력층의 학습에 퍼지 제어 기법을 적용하여 학습률을 동적으로 조정한다. 얼굴 인증은 템플릿 매칭 알고리즘을 이용하여 얼굴 템플릿 데이터베이스를 구축하고 주민등록증에서 추출된 얼굴 영역과의 유사도를 측정하여 주민등록증 얼굴 영역의 위조여부를 판별한다. 제안된 주민등록증 인식 방법의 성능을 평가하기 위해 원본 주민등록증 영상에 대해 얼굴 영역 위조, 노이즈추가, 대비 증감, 밝기 증감 그리고 영상 흐리기 등의 변형된 영상들을 생성하여 실험한 결과, 제안된 방법이 주민등록번호 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다

  • PDF

텍스트마이닝 기반의 효율적인 장소 브랜드 이미지 강도 측정 방법 (An Efficient Estimation of Place Brand Image Power Based on Text Mining Technology)

  • 최석재;전종식;비스워스 수브르더;권오병
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.113-129
    • /
    • 2015
  • 장소 브랜딩은 특정 장소에 대한 의미 부여를 통해 장소성의 정체성 및 공동가치를 생성하며 가치 창출을 하는데 중요한 활동이며, 장소 브랜드에 대한 이미지 파악을 통해 이루어진다. 이에 마케팅, 건축학, 도시건설학 등 여러 분야에서는 인상적인 장소 브랜드의 이미지를 구축하기 위하여 많은 노력을 기울이고 있다. 하지만 설문조사를 포함한 대면조사 방법은 대부분 주관적인 작업이며 측정에 많은 인력 또는 고도의 전문 인력이 소요되어 고비용을 발생시키므로 보다 객관적이면서도 비용효과적인 브랜드 이미지 조사 방법이 필요하다. 이에 본 논문은 텍스트마이닝을 통하여 장소 브랜드의 이미지 강도를 객관적이고 저비용으로 얻는 방법을 찾는 것을 목적으로 한다. 제안하는 방법은 장소 브랜드 이미지를 구성하고 있는 요인과 그 키워드들을 관련 웹문서에서 추출하며, 추출된 정보를 통해 특정 장소의 브랜드 이미지 강도를 측정하는 방법이다. 성능은 안홀트 방법에서 평가에 사용하는 전세계 50개 도시 이미지 인덱스 순위와의 일치도로 검증하였다. 성능 비교를 위해 임의로 순위를 매기는 방법, 안홀트의 설문방식대로 일반인이 평가하는 방법, 본 논문의 방법을 사용하되 안홀트의 방법으로 학습한 것으로 유의한 것으로 추정되는 평가 항목만을 반영하는 방법과 비교하였다. 그 결과 제안된 방법론은 정확성, 비용효율성, 적시성, 확장성, 그리고 신뢰성 측면에서 우수함을 보일 수 있었다. 따라서 본 연구에서 제안한 방법론은 안홀트 방식에 상호 보완적으로 사용될 수 있을 것이다. 향후에는 장소 브랜드 이미지를 형성하는 속성 별로 등장횟수를 계산 한 후에 장소 브랜드에 대한 태도, 연상, 그리고 브랜드 자산과의 인과관계를 자동으로 파악할 수 있는 부분까지 구현하고 실증적 실험을 할 예정이다.

문서 요약 기법이 가짜 뉴스 탐지 모형에 미치는 영향에 관한 연구 (A Study on the Effect of the Document Summarization Technique on the Fake News Detection Model)

  • 심재승;원하람;안현철
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.201-220
    • /
    • 2019
  • 가짜뉴스가 전세계적 이슈로 부상한 최근 수년간 가짜뉴스 문제 해결을 위한 논의와 연구가 지속되고 있다. 특히 인공지능과 텍스트 분석을 이용한 자동화 가짜 뉴스 탐지에 대한 연구가 주목을 받고 있는데, 대부분 문서 분류 기법을 이용한 연구들이 주를 이루고 있는 가운데 문서 요약 기법은 지금까지 거의 활용되지 않았다. 그러나 최근 가짜뉴스 탐지 연구에 생성 요약 기법을 적용하여 성능 개선을 이끌어낸 사례가 해외에서 보고된 바 있으며, 추출 요약 기법 기반의 뉴스 자동 요약 서비스가 대중화된 현재, 요약된 뉴스 정보가 국내 가짜뉴스 탐지 모형의 성능 제고에 긍정적인 영향을 미치는지 확인해 볼 필요가 있다. 이에 본 연구에서는 국내 가짜뉴스에 요약 기법을 적용했을 때 정보 손실이 일어나는지, 혹은 정보가 그대로 보전되거나 혹은 잡음 제거를 통한 정보 획득 효과가 발생하는지 알아보기 위해 국내 뉴스 데이터에 추출 요약 기법을 적용하여 '본문 기반 가짜뉴스 탐지 모형'과 '요약문 기반 가짜뉴스 탐지 모형'을 구축하고, 다수의 기계학습 알고리즘을 적용하여 두 모형의 성능을 비교하는 실험을 수행하였다. 그 결과 BPN(Back Propagation Neural Network)과 SVM(Support Vector Machine)의 경우 큰 성능 차이가 발생하지 않았지만 DT(Decision Tree)의 경우 본문 기반 모델이, LR(Logistic Regression)의 경우 요약문 기반 모델이 다소 우세한 성능을 보였음을 확인하였다. 결과를 검증하는 과정에서 통계적으로 유의미한 수준으로는 요약문 기반 모델과 본문 기반 모델간의 차이가 확인되지는 않았지만, 요약을 적용하였을 경우 가짜뉴스 판별에 도움이 되는 핵심 정보는 최소한 보전되며 LR의 경우 성능 향상의 가능성이 있음을 확인하였다. 본 연구는 추출요약 기법을 국내 가짜뉴스 탐지 연구에 처음으로 적용해 본 도전적인 연구라는 점에서 의의가 있다. 하지만 한계점으로는 비교적 적은 데이터로 실험이 수행되었다는 점과 한 가지 문서요약기법만 사용되었다는 점을 제시할 수 있다. 향후 대규모의 데이터에서도 같은 맥락의 실험결과가 도출되는지 검증하고, 보다 다양한 문서요약기법을 적용해 봄으로써 요약 기법 간 차이를 규명하는 확장된 연구가 추후 수행되어야 할 것이다.

미술관 이미지저작권 아카이브 모델 연구 (A Study on Image Copyright Archive Model for Museums)

  • 남현우;정성인
    • 한국과학예술포럼
    • /
    • 제23권
    • /
    • pp.111-122
    • /
    • 2016
  • 본 연구의 배경 및 목적은 다음과 같다. 미술관에서 생성되는 미술 콘텐츠 생명주기 전반에 걸친 저작권 서비스 연구개발의 필요성과 창조산업에서 이미지저작권 콘텐츠 유통시장 활성화와 저작권 서비스 관리체계 수립의 필요성에 의해, 이미지저작권 보호 및 이용 활성화를 위한 미술관 이미지저작권 아카이브 모델을 설정하기 위해 다학제적으로 진행된 융복합 연구이다. 본 연구의 연구방법 및 내용, 결과는 다음과 같다. 국내 1,000여개의 뮤지엄(박물관, 미술관, 전시관 등)의 저작권료에 대한 산정, 분배, 정산, 모니터링에 대한 기준체계를 제안하여 이미지 저작물의 이용 활성화 및 재활용을 통한 미술콘텐츠 생태계 투명화 및 효율성 향상화를 위해서 다양한 제안이 이루어졌다. 우선, 이미지저작권 아카이브 모델의 내용설계 및 구조설계를 제안하였으며, 프로토타입 시뮬레이션, 실현 시뮬레이션, 모델 가동 시뮬레이션을 위하여, 미술관 미술콘텐츠 유통 서비스 플랫폼을 제안하여, 미술 콘텐츠 저작권료 프로세스 모델을 설정하였다. 미술관 소장품 및 미술작품 유통 과금 기술 개발과 저작권 자동분배 및 정산 엔진 개발은 이미지 콘텐츠에 대한 과금 체계 및 기술 개발이 미약하기 때문에 기본 프레임워크는 기존 콘텐츠 과금 프레임워크를 모델로 사용하였다. 궁극적으로는 미술작가, 미술관 학예사, 유통업체 등이 사용가능한 이미지저작권 아카이브 모델을 제안하였다. 사업화 전략에서는 미술관 이미지저작권 아카이브 모델의 틈새시장 침투전략(Niche penetration strategy)을 제안하였다. 판매확대 전략에서는 미술관 아카이브 시스템의 유동적 연결을 통하여, B2B, B2G, B2C, C2B 형태의 이미지 거래를 효율적으로 진행되게 하며, 이미지 저작물의 관리가 통제 가능한 비즈니스 모델이 수립되었다. 향후 혹은 앞으로의 과제는 미술관에서 소장하고 있는 소장품 및 신규 창작 작품의 미술 콘텐츠 분쟁 예방 및 유통 및 활용에 대한 정보 제공을 통해, 미술작품에 대한 이미지저작권자와 소유자간의 분쟁 등을 최소화하고, 미술품 저작물의 관리성이 향상될 것으로 기대된다. 또한 미술관의 소장품 및 신규작품에 대한 아카이브에 대한 가이드라인이 제공되어, 이미지저작권 등록 증대가 예상되며, 이미지저작권 유통 서비스에 대한 저작권료, 과금, 분배, 정산 등 다양한 융합적 비즈니스 활용이 가능해 질 것이다.

양돈농가의 돈분뇨 액비화 처리 우수사례 실태조사 (A Case Study on the Effective Liquid Manure Treatment System in Pig Farms)

  • 김수량;전상준;홍인기;김동균;이명규
    • 한국축산시설환경학회지
    • /
    • 제18권2호
    • /
    • pp.99-110
    • /
    • 2012
  • 본 연구에서 조사된 일부 선도적인 양돈농가에서는 설치 운영하는 호기적 액상발효 공정은 대부분의 농가가 공정별 설계인자 및 물리 화학적인 성분변화의 특성보다는 경험적인 운영을 토대로 액비를 생산하고 있는 것을 알 수 있었다. 김 등의 조사연구에 따르면 가축분뇨의 발생단계인 분뇨수거방식은 현재 국내 돈사의 70% 이상이 슬러리 형태로 분뇨가 배출되고 있는 것으로 보고되고 있다. 양돈분뇨의 수거방식과 배출형태가 대부분 슬러리라는 사실은 양돈분뇨의 적정처리에 의한 환경오염 차단과 자원화 이용과정에 적용될 각종 공법 및 시스템 적용이 돈사 슬러리부터 집중 관리해야 함을 시사한다. 이처럼 가축분뇨 액비화의 적정처리에 있어서는 발생단계 뿐만 아니라 액비가 토양에 환원되기 직전까지의 모든 과정이 전반적으로 고려되어야 한다. 본 연구의 조사대상 농가의 가축분뇨 액비화 운영에 있어서 핵심적으로 구분 할 수 있는 단계를 주요사항 별로 구분하여 Table 8에 나타내었다. 가축분뇨 액비화 처리에 있어서 고액분리 단계의 경우 고액분리 방식과 효율에 따라 BOD (생물학적산소요구량), COD (화학적산소요구량), VFA (휘발성지방산) 등의 제거율의 차이가 있는 것으로 보고되고 있으며, 이는 후단공정 즉 주발효조에서의 공기주입량의 산정, 공기공급방식, 발효기간 및 2차 발효 등 운영방식 결정에 주요한 요인이 될 수 있다. 이와 같이 액비가 생산되어 토양에 환원되기까지의 과정은 각각의 주요한 요소들이 유기적으로 연계되어 있으며, 농가 현장을 방문조사하고, 생산되는 액비를 비교 분석한 결과 액비화 공정에 있어서 필수적인 핵심적 단계를 도출 할 수 있었다. 이에 대한 주요내용은 다음과 같다. 1. 돈사 슬러리 관리 단계 돈사 슬러리는 혐기부패를 최대한 방지하며, 주요 악취물질인 $H_2S$, $NH_4$, VFAs의 생성을 억제하여야 한다. 돈사환경을 개선하기 위한 방법으로서는 부숙이 완전히 완료되어 유용미생물이 활성화된 액비를 돈사 세척수로 이용하거나, 슬러리 피트에 일부 투입하여 단순 저장일수를 처리일수로의 개념적 전환이 필요하다. 2. 고액분리 단계 일반적으로 BOD의 주요원인인 고농도의 유기물질은 대부분 분뇨의 고형성분에 포함되어 있기 때문에 물리적 처리공정인 고액분리 단계에서 최대한으로 제거하여 후단공정인 주발효조의 부하를 최소화 시킨다. 3. 발효처리-공기공급 단계 축산농가 마다 사료의 종류나 관리방법 등이 각기 다르므로 배출되는 슬러리의 성상을 파악하여 물질수지와 처리일수에 기초한 발효조 용량과 공기주입량의 산정이 필요하다. 또한 공기확산 및 막힘현상을 고려한 자동제어 장치나 발효조의 상태를 감시 제어하기 위한 인자로서 pH 및 산화환원전위 등을 실시간으로 모니터링 하는 것이 중요하다. 4. 발효처리-미생물, 반송 단계 일반점검 (온도, pH, 용존산소, 산화환원전위, 전기전도도 등)과 정밀점검 (BOD, COD, VFAs, SS, N, P 등)의 주기적인 점검을 통하여 미생물 생장에 알맞은 유입농도와 반송량을 결정하고 농가환경에 맞는 발효조 운전방식을 확립 할 필요가 있다. 5. 후숙처리-최종액비 단계 후숙조에서는 공기과잉 투입으로 인한 질소성분의 손실을 방지하고, 유용미생물을 이용하여 토양환원에 적합한 액비를 제조한다. 가스발생에 의한 작물생육 피해를 방지할 수 있는 액비 안정화 운전기술을 확립하고, 살포시기를 대응하여 액비의 유 출입을 집중적으로 관리한다. 6. 액비유통센터 연계-농지환원 단계 제조된 액비는 액비유통센터에 위탁하여 살포하는 체계를 확립하고, 악취 민원의 발생을 최대한 억제한다. 액비유통센터는 철저한 년 중 살포프로그램을 운영하여 원활한 살포조직 체제를 구성하는 것이 중요하다. 축산농가에서 가축분뇨 관리방법은 축사의 입지, 주변 환경 및 각종 환경규제 등 여러가지 여건에 따라 각기 다르며, 다수의 축산농가가 특정한 처리방법을 동일하게 적용하는 것은 현실적으로 불가능하다. 따라서 본 연구에서 분석된 각 농가의 액비 성상 등은 여러 가지 환경적 요소가 복합적으로 작용하고 있으며, 조사농가 중 일부는 발효과정 중에 있는 액비를 채취하였으므로, 분석결과를 해석하여 가축분뇨 운영관리를 총체적으로 판단하는 것은 다소 무리가 있다. 추후에는 각 공정에 대해 유입되는 슬러리원수에서부터 처리가 완료되는 단계까지의 과정을 일괄적으로 분석하여, 유입 유출농도, 수리학적 체류시간 등 공학적 요소 및 이에 따른 경제성 평가 등을 세밀하게 연구할 필요성이 있다. 이밖에도 가축분뇨의 중요한 관리부분인 병원성미생물과 관련된 위해성 분분을 고려하지 않을 수 없다. 가축분뇨에는 인간에게 직접적인 영향을 미칠 수 있는 Escherichia coli, Campylobacter, salmonella, Listeria 등 다양한 병원성 세균이 발견된다. 최근 전국적으로 발생된 구제역 사태는 우리나라 축산업 자체에 큰 타격을 주었을 뿐만 아니라, 사회 경제적으로도 막대한 손실을 가져왔다. 이 사건을 계기로 국내 축산기반의 전면적 재정비가 불가피하게 되었음은 물론 가축 분뇨에서 유래한 병원성 미생물 및 바이러스 등의 근원적 대처방법 개선과 가축분뇨의 위생적 처리에 대한 안전관리가 시급한 현안이 되었다. 따라서 안전한 경축순환의 액비유통 관리 체계 구축을 위해서는 병원성 미생물, 바이러스 등과 같은 위해요소를 억제 할 수 있는 액비화 처리기술의 표준화 공정 개발 또한 필요하다.