• Title/Summary/Keyword: 자동면취기

Search Result 5, Processing Time 0.021 seconds

A Basic Research for the Development of Generalized Shape Guided Automatic Deburring Machine (형상안내형 범용형상자동면취기의 개발을 위한 기초연구)

  • Kim, Sang-Myng;Jung, Yoon-Gyo;Cho, Sung-Leem
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.104-109
    • /
    • 2012
  • Recently, the deburring process which is last process of manufacture is one of the important process for complete product. The manual deburring process can cause not only higher error rate but also irregular shape and quality of product. Therefore, Shape Guided Automatic Deburring Machine has been developed to resolve the above problems. But the Shape Guided Automatic Deburring Machine have been applied only to produce a circular product. Therefore, this machine is difficult to apply to products of various shapes. To solve this problem, we would like to develop Generalized Shape Guided Automatic Deburring Machine applicable to various shapes. To this end, we have done the modeling and design using CATIA program and have performed machine simulation.

The Development of Shape Guided Automatic Deburring Machine for Mold Products (금형제품용 형상안내형 자동면취기의 개발)

  • Hwang, Jong-Dae;Kim, Jin-Seob;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.16-22
    • /
    • 2011
  • Recently, the deburring process which is last process of manufacture is one of the important process for complete product. The development of shape guided automatic deburring machine is essential because manual deburring process has very irregular quality and higher error rate as well as consider irregular shape radius. In order to develop of shape guided automatic deburring machine, in this study, we conducted 3D design, assembly, machine simulation and structural analysis using CATIA. Also, we conducted to make automatic deburring machine and conducted a performance test.

Fabrication and Experiment of Pneumatic Steel Plate Chamfering Machine and Sensor System for Active Control of Chamfering (면취 공정의 능동 제어를 위한 공압식 자동 강재 면취기와 센서 시스템의 제작 및 실험)

  • Na, Yeong-min;Lee, Hyun-seok;Kim, Min-hyo;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.80-86
    • /
    • 2020
  • With the exception of welding activities, it is forbidden to use electricity in shipyards, owing to safety concerns such as the possibility of fire, explosions, and short circuits. In this paper, an automatic chamfering machine using pneumatics is proposed for use in such environments. Customers specify their requirements and the machine derives the corresponding theoretical design conditions. The proposed machine was used to perform 3D modeling, and its suitability and performance were confirmed via cutting experiments of the manufactured device. Two types of sensors may be used in this system: contact and non-contact. In the case of the contact type, an end-stop switch that can recognize the end of the material is installed, and when the machine reaches the end of the material, the end-stop switch is operated to cut off the air pressure. In the non-contact type, four sensors were used: photonic, ultrasonic, metal detection, and encoder. The use of the four sensors was repeated 30 times, and the average error determined. Thus, the optimum sensor was identified.

Diagnosis of Cutting Stability of Portable Automatic Beveling Machine Using Spindle Motor Current (주축 모터를 이용한 포터블 자동 면취기의 가공 안정성 진단)

  • Kim, Tae Young;An, Byeong Hun;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.57-63
    • /
    • 2022
  • This study describes a system that monitors the tool and cutting state of automatic beveling operation in real time. As a signal for cutting state monitoring, a motor current detected from the spindle drive system of the automatic beveling machine is used to monitor abnormal state. Because automatic beveling is processed using a face milling cutter, the cutting force mechanism is the same as the milling process. The predicted cutting torque is obtained using a cutting force model based on specific cutting resistance. Then, the predicted cutting torque is converted into the spindle motor current value, and cutting state stability is diagnosed by comparing it with the motor current value detected during beveling operation. The experimental results show that the spindle motor current can detect abnormal cutting state such as overload and tool wear during beveling operation, and can diagnose the cutting stability using the proposed equip-current line diagram.