본 연구에서는 자동기상관측시스템(AWS)을 이용하여 기상요소의 관측 자료를 수집하고 실시간으로 그 자료를 제공하는 웹 페이지를 개발하였다. 이 시스템은 실시간으로 자료를 제공하면서 동시에 데이터베이스(DB)로 누적하여, 사용자의 요청에 따라 과거의 기상 자료를 파일로 제공하는 기능도 있다. 완성된 페이지를 이용하여 학교 현장에서 지구과학 교과의 기상분야 탐구학습에 성공적으로 활용하였다. 이 연구 결과, 기상 관측 자료를 실시간으로 제공함으로써 기상 분야 탐구학습의 현장감을 높일 수 있게 되었다. 또 누적된 과거 기상 자료를 이용함으로써 시간규모가 너무 길어서 실질적인 탐구학습이 어렵던 지구과학 교과의 제약을 일부 극복하게 되었다.
본 연구에서는 상층기상자료, 자동 기상 관측망 자료 및 신경망기법을 사용하여 단시간 강우 예측 모형을 개발하였다. 호우를 동반한 이송 기상 시스템의 이동 경로가 라디오존데로부터 획득할 수 있는 상층기상 자료 즉 상층 풍향자료와 동일한 방향으로 이동한다는 가정 하에 원거리에서 발생하는 기상현상의 발달과정을 판단 할 수 있는 알고리즘을 개발하고, 이러한 원거리 입력 자료와 예측하고자 하는 값 사이의 비선형 상관 관계를 연결하는 기법으로 인공 신경망 기법을 도입하였다. 개발된 모형을 2002년 태풍 루사로 인하여 큰 피해를 입은 감천지역에 적용하였다. 포항과 오산의 라디오존데에서 획득한 700mb에서의 풍향자료와 5년의 자료기간을 가지는 350개의 자동 기상 관측망 자료를 입력 자료로 사용하였으며 결과는 상층기상자료를 사용하지 않고 예측한 결과에 대하여 개선된 강우 예측결과를 보여주었다.
수치예보모델을 이용한 예보의 정확도를 높이기 위해 관측 간격이 조밀하고 많은 양의 관측자료를 사용하는 방법이 있다. 현재 기상청에서는 자동기상관측장비(Automatic Weather Station, AWS)를 설치하여 관측자료를수 집하고 있지만, 고가의 설치 및 유지보수 비용 등의 경제적인 한계가 있다. 소형 자동기상관측장비(Mini-AWS)는 기온, 습도, 기압을 측정하고 기록할 수 있는 초소형 기상관측장비로 설치 및 유지보수 비용이 저렴하고 설치를 위한 장소 선택의 제약이 크지 않아 필요한 지역에 설치하여 관측자료를 수집하기가 용이하다. 그러나 설치 장소에 따라 외부환경에 영향을 받을 수 있기 때문에 관측자료의 보정이 필요하다. 본 논문에서는 Mini-AWS 기압자료를 기상자료로 활용하기 위한 보정기법을 제안한다. Mini-AWS를 통해 수집된 관측자료는 전처리 과정을 거쳐 주변에서 가장 가까운 AWS 기압 값을 참값으로 기계학습 기법을 이용하여 기압 보정을 수행하였다. 실험결과 기상관측 규정에 따른 허용오차 범위 내에 포함되었으며, 지지벡터 회귀를 적용한 보정기법이 가장 좋은 성능을 보였다.
본 연구에서는 강원 영동 및 경북 동부지역의 산악기상관측시스템 구축을 위한 AWS 위치선정, 네트워크 구성(관측시스템, 통신시스템, 자료처리시스템)과 특히, 산불방지를 위해 산림청과 지방자치단체가 기 설치한 산불무인감시카메라, 무선중계탑의 산악기상관측망과의 연계 구축방안과 산악기상관측망의 관리방안을 제시하였으며, 본 연구를 통해 얻어진 사항은 다음과 같다. 산지가 많은 강원도에서는 산악지형에 따른 악기상이 자주 발생하여 강원지방기상청에서는 관측망을 유지관리 하는데 고초를 겪고 있으며 강풍, 뇌전현상 등으로 장비피해를 많이 입어, 보다 피해를 최소화할 수 있는 여러 가지 방안들을 강구하여 왔다 따라서 산악지형에 관측망을 구성하기 위해서는 장비의 견고성을 최우선적으로 반영해야 한다. 전원시설은 가능한 태양전원을 권장하지만 일조량이 적은 깊은 계곡과 같은 지역에 설치가 이루어질 경우 상용전원을 사용할 수밖에 없으며 대부분 산악에서의 전원시설은 열악하여 전원 백업시설 설치를 강구해야 한다. 전원 백업시설의 효율성을 유지하기 위해서는 소비전력이 적은 시스템을 선택하여 관측자료의 손실을 최대한 방지해야만 한다. 또한 태양전원을 이용할 경우 충전과 소모량을 사전에 면밀히 검토해야 한다. 산악은 뇌전현상이 근접하고 잦기 때문에 뇌전으로부터 장비 보호시설 설치를 강구하기 위해 피뢰접지 및 장비접지 시설에 투자를 아껴서도 안 될 것이다. 뇌전으로부터의 장비 보호시설을 강구하는 것도 중요 하지만 써지에 강한 제품을 채택하는 것이 보다 중요하다고 하겠다. 자료수집에 있어서는 전원 및 통신환경을 감안하여야 하며 전체 통신망을 단일화하는 것도 간결하지만 단일 통신망만을 채택할 경우에는 한계성이 있으므로, 다양한 통신망을 이용하는 것이 자료수집의 한계를 극복할 수 있는 방법이다. 따라서 수집 통신망을 통한 기상 관측 자료를 인근 1차 수집기관을 거쳐 최종 메인 수집장치로 내부망을 따라 수집하는 것이 최선의 망 운영방법이다. 자동관측시스템(AWS) 설치 시 기존의 무인감시카메라와 무선중계탑을 최대한 활용하되 무인감시카메라 설치위치$(70\siml,245m)$와 무선중계탑의 설치위치 $(299\sim1,573m)$가 산불위험지역에 포함되어 있는지의 면밀한 검토가 요구된다. 산불 등 각종 산림재난 방지와 관련한 정보를 얻을 수 있는 자동기상관측시스템(AWS)의 설치 위치는 산불발생확률모형에서 산정된 위험지역 내에 설치하는 것이 산불발생 위험지역을 판정하는데 매우 효과적일 것으로 판단된다. 기상청과 지자체가 보유하고 있는 기상관측 장비들은 대부분 도시를 중심으로 설치 운영되고 있어 산림 또는 산악에 설치된 기상관측 장비의 수는 적은 편이다. 따라서 산림과 산악에 기상관측 장비의 보강은 필수적이다. 관측망 구성은 기상청의 관측 표준(안)을 준수하며, 설치 지점의 특성에 따라 가장 경제적인 방법을 선택하는 것이 바람직하며, 특히 장비구매 설치 시 다양한 종류의 제품을 선택하는 것은 차후 장비 관리에 어려움을 겪을 소지가 있어 가능한 우수한 제품을 선택하되 동일 제품 사용을 권장한다. 따라서 위의 망구축이 이루어져 현재 기상청이 설치 운영하고 있는 측정 장비에 의해 취득한 기상자료를 공동 활용하여 표출하면 더욱 상세한 자료의 획득과 활용이 기대되어 진다. 또한, 금번 논문에서는 산불위험지역의 격자점(15km)내에 최소한 1대의 AWS 설치방안을 제시하였지만, 금후에는 15km내에서도 능선, 계곡 등 구체적인 위치확정을 위한 선행연구가 실시되어야할 것으로 판단된다.
농업에서 서리는 치명적인 피해를 가져오기 때문에 관측과 예측이 매우 중요하다. 기상청 서리관측자료를 분석한 최근 보고에 따르면 기후변화에 따른 지구온난화에도 불구하고 봄철 늦서리일이 빨라지지 않았고, 서리 빈도도 감소하지 않았다. 따라서 농업 서리피해에 대비하여 위험 예상 지역에서의 서리 관측 자동화와 지속적인 운영이 중요하다. 기존에 활용되고 있는 엽면습윤센서를 이용한 서리관측은 관측센서의 오염이나 주변 환경의 습도 변화에 따라 기준 전압값이 장기간에 걸쳐 변동하는 문제가 있었다. 본 연구에서는 이러한 문제를 자동적으로 해결하도록 데이터로거 프로그램으로 구현하였다. 구축된 서리자동관측시스템은 안정적으로 장기간에 걸쳐 시간 고해상도 관측자료를 축적할 수 있다. 이 자료는 향후 기계학습 방법을 이용한 서리 진단모델의 개발과 주변 지역에 대한 서리발생 예측 정보 생산에 활용할 수 있을 것이다.
우리나라에서 발생하는 기상 재해 현상은 주로 태풍, 집중호우, 장마 등 인명 및 경제적인 피해가 크며, 단기간에 국지적으로 나타난다. 현재 재해 감시 및 예보는 주로 종관기상관측체계를 이용하고 있다. 하지만, 우리나라의 복잡한 지형, 인구 밀집 지형, 관측 시기가 일정하지 않은 지형과 같은 조건에서 미계측 자료 및 지역이 다수 존재 때문에 강수의 공간 분포와 강도에 대한 정밀한 정보를 제공하지 못하는 실정이다. 최근 광범위한 관측영역과 공간 분해능의 개선, 자료추출 알고리즘의 개발로 전세계적으로 위성영상 기반 기상관측 자료의 활용성이 증대되고 있다. 본 연구에서는 한반도 지역의 지상 관측데이터와 전지구 격자형 위성 강우자료를 비교하여 한반도의 적용성을 분석하고자 한다. 다양한 위성영상 기반 기상자료인 Climate Hazards Groups InfraRed Precipitation with Station (CHIRPS), Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), Global Precipitation Climatology Centre (GPCC), Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) 4개의 강우위성영상을 수집하여, 1991년부터 2020년까지 30년 데이터를 활용하였다. 강수량 변동성 비교를 위하여 기상청의 종관기상관측장비 (Automated Synoptic Observation System, ASOS), 자동기상관측시설 (Automatic Weather System, AWS) 데이터와 상관 분석을 수행하고, 강우위성영상의 국내 적합성을 판단하고자 한다.
댐 물수지 분석에 있어 매우 중요한 요소는 강수량, 유입 방류량, 토양수분량, 증발산량 등이 있다. 현재 육지에서의 증발산량은 대부분 에디공분산시스템에 의해 관측되고 있으며, 많은 전문가들이 양질의 자료를 산출하고 있다. 하지만 수면에서의 증발량관측은 아직 부족한 상황이다. 우리나라는 기후특성상 여름철에 강우가 집중됨에 따라 효율적인 댐 관리가 매우 중요하다. 댐관리의 주요 인자인 수면증발량은 현재 용담댐에서만 이루어지고 있다. 용담댐의 수면증발량 관측은 2013년부터 수행되고 있고, 수면위에 플랫폼을 설치하고 팬 내부에 수심이 1 m인 대형증발팬을 고정하는 방식을 취하고 있으며, 관측된 수위자료는 호내 수온을 고려하여 수면증발량으로 환산된다. 관측항목으로는 팬 내 외부 및 저수지 표층 수온, 팬 내부 정밀 수위뿐만 아니라 다양한 기상요소들이 있다. 2013년에 생산한 수면증발량은 풍향풍속, 수온, 상대습도, 복사량, 강수량 자료를 통해 정확도를 검증하였으며, Penman(1984)공식을 활용하여 실측 수면증발량과 추정 수면증발량을 비교 분석하였다. 본 연구는 용담호에서 자동 관측되고 있는 수위변동 자료를 활용해 수면에서의 증발량을 분석하였다. 2014년 3월부터 2015년 2월까지의 자료를 활용하였으며, 관측기간 중 최대 일증발량은 9.7 mm/day, 월 최대 일평균증발량은 3.5 mm/month(10월)로 나타났다. 수면에서 가장 많은 증발량이 나타난 시기는 10월 (증발량 : 107.6 mm, 강수량 : 122.9 mm)로 강수량의 약 88 %가 증발되었음을 알 수 있었다. 그 다음으로는 9월과 5월 순이었다. 증발량이 가장 많다고 예상되었던 7월과 8월의 경우는 각각 18일과 21일간 강수가 발생하였으므로 대기 중의 높은 습도로 인해 증발량이 크지 않았다. 결론적으로 수면에서의 증발량이 기상환경에 의존하고 있다는 사실은 명백하다. 그러므로 효율적인 수자원관리를 위해서는 다양한 지점에서의 수면증발 관측 및 기상요소와의 상관 성분석이 시급하다고 판단된다.
본 연구에서는 상층기상자료, 자동 기상 관측망 자료 및 신경망기법을 사용하여 단시간 강우 예측 모형을 개발하였다. 호우를 동반한 이송 기상 시스템의 이동 경로가 라디오존데로부터 획득할 수 있는 상층기상 자료 즉 상층 풍향자료와 동일한 방향으로 이동한다는 가정 하에 원거리에서 발생하는 기상현상의 발달과정을 판단 할 수 있는 알고리즘을 개발하고, 이러한 원거리 입력 자료와 예측하고자 하는 값 사이의 비선형 상관관계를 연결하는 기법으로 인공 신경망 기법을 도입하였다. 개발된 모형을 2002년 태풍 루사로 인하여 큰 피해를 입은 감천지역에 적용하였다. 포항과 오산의 라디오존데에서 획득한 700mb에서의 풍향자료와 5년의 자료기간을 가지는 350개의 자동 기상 관측망 자료를 입력 자료로 사용하였으며 결과는 상층 풍향자료를 사용한 경우에 상관계수가 0.41에서 0.73으로 개선되었으며 숙련도도 35%향상되었다. 모형의 개선도를 나타내는 통계치의 개선을 통해 상층기상자료를 활용한 강우예측 모형이 단지 지상 강우계 자료만 사용한 예측보다 개선된 결과를 보여줌을 알 수 있다.
태풍 및 해상 악천후에 견디며 무중단 운영, 실시간 관측할 수 있는 고급 사양의 부이식 파고 관측부이 시스템 개발 시급한 상황이다. 본 연구에서 부이식 파고관측 시스템을 국산화 개발하여 실시간 관측(풍속, 기온, 기압)를 부이에 추가하여 해양에 설치하고 해양의 자료를 실시간으로 전송하는 시스템 개발 하였다. 개발된 부이식 파고관측 시스템을 통하여 매년 해상에 투하하는 해양기상부이(표류형 파향파고계)의 수요를 충족할 것으로 기대된다.
바람은 기상, 기후, 농림, 교통, 산업, 재난, 생활안전, 신재생 에너지 등 다양한 분야에서 널리 활용되는 요소 중 하나이다. 특히, 항공기 이착륙에서는 측풍의 형태가 항공기 안전에 큰 영향을 미친다. 본 연구에서는 연구지역의 기 구축된 자동기상관측장비(AWS)의 정보를 연계 구축하여, 풍향과 풍속을 1분 단위의 변화량을 반영한 실시간 바람정보 표출시스템을 개발하였다. 이를 통해 기존 문자 및 이미지 형태의 정보에서 시각화된 실시간 바람지도 제공을 통해 공항 이착륙시 항공기 안전운항에 도움이 될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.