• Title/Summary/Keyword: 자동계측

Search Result 368, Processing Time 0.03 seconds

Calculation of Deflection Using the Acceleration Data for Concrete Bridges (가속도 계측 자료를 이용한 콘크리트 교량의 처짐 산정)

  • Yun, Young Koun;Ryu, Hee Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.92-100
    • /
    • 2011
  • This paper describes a numerical modeling for deflection calculation using the natural frequency response that is measured acceleration response for concrete bridges. In the formulation of the dynamic deflection, the change amounts and the transformed responses about six kinds of free vibration responses are defined totally. The predicted response can be obtained from the measured acceleration data without requiring the knowledge of the initial velocity and displacement information. The relationship between the predicted response and the actual deflection is derived using the mathematical modeling that is induced by the process of a acceleration test data. In this study, in order to apply the proposed response predicted model to the integration scheme of the natural frequency domain, the Fourier Fast Transform of the deflection response is separated into the frequency component of the measured data. The feasibility for field application of the proposed calculation method is tested by the mode superposition method using the PSC-I bridges superstructures under several cases of moving load and results are compared with the actually measured deflections using transducers. It has been observed that the proposed method can asses the deflection responses successfully when the measured acceleration signals include the vehicle loading state and the free vibration behavior.

A Study On the Electrical Characteristic of WO3 and NiO-WO3 Thin Films Prepared by Thermal Evaporation (Thermal Evaporation법에 의해 제조된 WO3 박막과 NiO-WO3박막의 전기적 특성에 관한 연구)

  • Na Eun-young;Na Dong-myong;Park Jin-seong
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.32-36
    • /
    • 2005
  • [ $WO_3$ ] and $NiO-WO_3$ thin films were deposited on a Si (100) substrate by using high vacuum thermal evaporation. The effects of various film thicknesses on the surface morphology $WO_3$ and $NiO-WO_3$ thin films were investigated. X-ray diffraction (XRD), Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the deposited films. The results suggest that as $WO_3$ thin films became thick, their grain grew up to a $0.6{\mu}m$. On the other hand, NiO-doping to $WO_3$ thin films inhibited the grain growth five times less than undoped $WO_3$ thin films. This results show that NiO doping inhibited the grain growing of $WO_3$ thin films. Also, the variation of NOx sensitivity $(R_{NOx}/R_{air})$ to the thickness of $WO_3$ and $NiO-WO_3$ thin films were measured according to the thickness change of thin films and the working temperature of sensor in 5ppm NOx gas. As a result, $NiO-WO_3$ thin films showed more excellent properties than $WO_3$ thin films for NOx sensitivity.

The Study on The Ventilated Flow in The Railway Tunnel Mock-Up for Tunnel Fire-Driven Flow Experiment (철도터널 화재유동 실험을 위한 모형 터널에서의 환기 유동 형태에 관한 연구)

  • Jang, Yong-Jun;Kim, Seung-Tae;Kim, Dong-Hyeon;Park, Won-Hee
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1781-1788
    • /
    • 2008
  • This report is the result of a basic experiment done on a mock-up tunnel, of what happens to the ventilated flow and fire driven flow inside a railway tunnel as the current inside the tunnel changes when an anti-smoke or a radio frequency invert control is installed. The duct used in this experiment is 10m in length, 0.5m in height and 0.25m in width and made of acrylic. An anti-smoke system with a motor that can produce current of 10m/sec maximum in order to create ventilated flow, has been installed. A honeycomb has been installed at the entrance of the duct to create a current flow that exists in tunnels. In order to create a ventilated flow, a current of 4m/s, 6m/s and 8m/s were generated using the anti-smoke system, as the study of current developed. A Hot-wire(TSI) and Pressure sensor(ENDEVCO) was installed in the duct, 1m apart, as the measurement of current and pressure went on. The current and pressure were automatically measured through the Lap View program and PC; the current flow in the mock-up tunnel generated by the honeycomb has been analyzed the pressure distribution and pressure drop has been analyzed.

  • PDF

Effects of Lettuce Cultivation Using Optical Fiber in Closed Plant Factory (폐쇄형 식물공장내 태양광 파이버를 이용한 상추 재배효과)

  • Lee, Sanggyu;Lee, Jaesu;Won, Jinho
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.105-109
    • /
    • 2020
  • This study was conducted to the improvement of solar light-based artificial light supply system and effect of lettuce cultivation. The artificial light supply system was consisted of units such as light source, power, system measurement and controller. The light source supply was composed of a solar transmitter and an LED lamp. The power supply consisted of an leakage breaker, SMPS, LED controller and relay. The solar transmitter was made of a quartz optical fiber with optimal light transmission. Artificial light used white lamp among LEDs. System measurement and control consisted of touch screen, Zigbee communication module and light quantity sensor. The results of test confirmed that the LED light is automatically activated when the intensity measured by the light intensity sensor is 200 μmolm-2s-1 or less. Moreover, the leaf length, root length, chlorophyll content and root fresh weight of optical fiber treatment was hight than LED lamp treatment. Therefore, it can be inferred that the energy-saving solar light collector device can be effective in the indoor lettuce production. However, the use of LED lamp is also recommended to assure the availability of sufficient sunlight in cloudy and rainy days.

Development and Validation of A Decision Support System for the Real-time Monitoring and Management of Reservoir Turbidity Flows: A Case Study for Daecheong Dam (실시간 저수지 탁수 감시 및 관리를 위한 의사결정지원시스템 개발 및 검증: 대청댐 사례)

  • Chung, Se-Woong;Jung, Yong-Rak;Ko, Ick-Hwan;Kim, Nam-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.293-303
    • /
    • 2008
  • Reservoir turbidity flows degrade the efficiency and sustainability of water supply system in many countries located in monsoon climate region. A decision support system called RTMMS aimed to assist reservoir operations was developed for the real time monitoring, modeling, and management of turbidity flows induced by flood runoffs in Daecheong reservoir. RTMMS consists of a real time data acquisition module that collects and stores field monitoring data, a data assimilation module that assists pre-processing of model input data, a two dimensional numerical model for the simulation of reservoir hydrodynamics and turbidity, and a post-processor that aids the analysis of simulation results and alternative management scenarios. RTMMS was calibrated using field data obtained during the flood season of 2004, and applied to real-time simulations of flood events occurred on July of 2006 for assessing its predictive capability. The system showed fairly satisfactory performance in reproducing the density flow regimes and fate of turbidity plumes in the reservoir with efficient computation time that is a vital requirement for a real time application. The configurations of RTMMS suggested in this study can be adopted in many reservoirs that have similar turbidity issues for better management of water supply utilities and downstream aquatic ecosystem.

Efficient Structral Safety Monitoring of Large Structures Using Substructural Identification (부분구조추정법을 이용한 대형구조물의 효율적인 구조안전도 모니터링)

  • 윤정방;이형진
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.1-15
    • /
    • 1997
  • This paper presents substructural identification methods for the assessment of local damages in complex and large structural systems. For this purpose, an auto-regressive and moving average with stochastic input (ARMAX) model is derived for a substructure to process the measurement data impaired by noises. Using the substructural methods, the number of unknown parameters for each identification can be significantly reduced, hence the convergence and accuracy of estimation can be improved. Secondly, the damage index is defined as the ratio of the current stiffness to the baseline value at each element for the damage assessment. The indirect estimation method was performed using the estimated results from the identification of the system matrices from the substructural identification. To demonstrate the proposed techniques, several simulation and experimental example analyses are carried out for structural models of a 2-span truss structure, a 3-span continuous beam model and 3-story building model. The results indicate that the present substructural identification method and damage estimation methods are effective and efficient for local damage estimation of complex structures.

  • PDF

Development of a Method for Calculating the Allowable Storage Capacity of Rivers by Using Drone Images (드론 영상을 이용한 하천의 구간별 허용 저수량 산정 방법 개발)

  • Kim, Han-Gyeol;Kim, Jae-In;Yoon, Sung-Joo;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.203-211
    • /
    • 2018
  • Dam discharge is carried out for the management of rivers and area around rivers due to rainy season or drought. Dam discharge should be based on an accurate understanding of the flow rate that can be accommodated in the river. Therefore, understanding the allowable storage capacity of river is an important factor in the management of the environment around the river. However, the methods using water level meters and images, which are currently used to determine the allowable flow rate of rivers, show limitations in terms of accuracy and efficiency. In order to solve these problems, this paper proposes a method to automatically calculate the allowable storage capacity of river based on the images taken by drone. In the first step, we create a 3D model of the river by using the drone images. This generation process consists of tiepoint extraction, image orientation, and image matching. In the second step, the allowable storage capacity is calculated by cross section analysis of the river using the generated river 3D model and the road and river layers in the target area. In this step, we determine the maximum water level of the river, extract the cross-sectional profile along the river, and use the 3D model to calculate the allowable storage capacity for the area. To prove our method, we used Bukhan river's data and as a result, the allowable storage volume was automatically extracted. It is expected that the proposed method will be useful for real - time management of rivers and surrounding areas and 3D models using drone.

In-service Investigation on the Flow Dynamics of a Trayed Column from the Measurement of an Internal Density by using a Gamma Absorption Technique (Gamma Absorption Technique를 이용한 Trayed Column의 가동 중 내부 밀도분포 측정에 의한 유체 유동상태 진단)

  • Kim, Jae-Ho;Kim, Jong-Bum;Kim, Jin-Seop;Lee, Na-Young;Lee, Sung-Sik;Jang, Seok-Joon;Jung, Sung-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • A distillation tower is one of the important facilities which separates and refines a crude oil stream according to certain boiling points. Its operation efficiency can affect the productivity of a refinery substantially. The objective of this study is to elucidate some operational information on the internal conditions of a distillation tower from a measurement of density profile by using a sealed gamma-ray source and a radiation detector. Gamma radiation counts were measured by a BGO detector positioned diametrically outside the tower-wall, opposite to the gamma source(Co-60) as the detector and the source were lowered concurrently. From the results, structural abnormality of the trays was not found inside the tower. Considering the flow distribution patterns, however, a vapor phase was dominantly formed at the upper part of the tower and a liquid phase at the lower part. From the gamma scanning of the distillation tower, it is anticipated that the gamma absorption technique can be used as an important tool for confirming the structural soundness of trays and investigating flow distribution in refinery facilities.

A New PMU (parametric measurement unit) Design with Differential Difference Amplifier (차동 차이 증폭기를 이용한 새로운 파라메터 측정기 (PMU) 설계)

  • An, Kyung-Chan;Kang, Hee-Jin;Park, Chang-Bum;Lim, Shin-Il
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.1
    • /
    • pp.61-70
    • /
    • 2016
  • This paper describes a new PMU(parametric measurement unit) design technique for automatic test equipment(ATE). Only one DDA(differential difference amplifier) is used to force the test signals to DUT(device under test), while conventional design uses two or more amplifiers to force test signals. Since the proposed technique does not need extra amplifiers in feedback path, the proposed PMU inherently guarantees stable operation. Moreover, to measure the response signals from DUT, proposed technique also adopted only one DDA amplifier as an IA(instrument amplifier), while conventional IA uses 3 amplifiers and several resistors. The DDA adopted two rail-to-rail differential input stages to handle full-range differential signals. Gain enhancement technique is used in folded-cascode type DDA to get open loop gain of 100 dB. Proposed PMU design enables accurate and stable operation with smaller hardware and lower power consumption. This PMU is implemented with 0.18 um CMOS process and supply voltage is 1.8 V. Input ranges for each force mode are 0.25~1.55 V at voltage force and 0.9~0.935 V at current force mode.

Study on precision improvement in weight measurement of an egg for the automatic egg sorting system (계란(鷄卵) 자동(自動) 선별기(選別機)의 난중측정(卵重測定) 정밀도(精密度) 향상(向上)에 관(關)한 기초연구(基礎硏究))

  • Kim, K.D.;Bok, J.S.
    • Korean Journal of Agricultural Science
    • /
    • v.27 no.1
    • /
    • pp.48-53
    • /
    • 2000
  • The various errors existing in a weight measurement system in most automatic egg sorting system available in Korean poultry farms have caused a large amount of economic losses to the egg producers. The object of this study was an importance of egg measurement system by changing both the number and the arrangements of load cells to reduce measuring errors. The results obtained were summarized as follow : 1. Four arrangements of load cells were selected as follows : layout I : Conventional one load cell method layout II : One load cell located as egg moving direction layout III : Two load cells located facing each other layout IV : Two load cells located as parallel with egg moving direction 2. The results of egg weight measurement according to four arrangements (Layout I, II, III, IV) showed that the average errors were 1.1218g, 0.5953g, 0.7786g, 0.2793g respectively. This indicated that the Layout IV (measuring by 2 load cells located parallel with the egg moving direction) caused the lowest average error and the best in precision. 3. The average vibration of axis X, y, Z were resulted as $5.1937{\times}10^{-3}G$, $9.3604{\times}10^{-3}G$, and $16.8657{\times}10^{-3}G$ respectively when sorting large sized egg. This indicated that the vibration of axis-Z was relatively higher than those of axis-X, and axis-Y.

  • PDF