• 제목/요약/키워드: 자기 조직화 지도

검색결과 183건 처리시간 0.032초

자기조직화지도를 활용한 정맥의 서식지 환경에 따른 조류 군집 특성 파악 - 금남호남 및 호남정맥, 한남금북 및 금북정맥, 낙남정맥을 대상으로 - (Identification of Bird Community Characteristics by Habitat Environment of Jeongmaek Using Self-organizing Map - Case Stuty Area Geumnamhonam and Honam, Hannamgeumbuk and Geumbuk, Naknam Jeongmaek, South Korea -)

  • 황종경;강태한;한승우;조해진;남형규;김수진;이준우
    • 한국환경생태학회지
    • /
    • 제35권4호
    • /
    • pp.377-386
    • /
    • 2021
  • 본 연구는 정맥의 서식지 관리 및 보전을 위한 기초자료를 제공하고자 수행하였다. 18개의 중점조사지역에서 지형, 서식지 환경을 고려하여 각 지점별로 개발지, 계곡부, 임도 및 능선 3가지 서식지유형으로 총 54개의 고정조사구를 선정하였다. 조사는 2016년부터 2018년까지 겨울철을 제외한 계절별(5월,8월, 10월)로 수행하였다. 서식지 유형별로 관찰된 조류를 자기조직화지도(SOM)를 활용하여 분포 패턴을 분석한 결과, 총 4개의 그룹으로 분류되었다(MRPP, A=0.12, p <0.005). 자기조직화지도 그룹별 종수와 개체수, 종다양도 지수를 비교분석한 결과 종수와 개체수, 종다양도 지수 모두 III번 그룹에 가장 높게 나타났다(Kruskal-Wallis, 종수: x2 = 13.436, P <0.005; 개체수: x2 = 8.229, P <0.05; 종다양도: x2 = 17.115, P <0.005). 또한 그룹별 지표종 분석과, 서식지 환경 특성을 파악하기 위해 토지피복도를 랜덤 포레스트 모델에 적용하여 분석한 결과, 4개 그룹간의 서식지환경이 구성하는 비율과 지표종에 차이를 보였다. 지표종 분석은 II번 그룹을 제외한 3그룹에서 총 18종의 조류가 지표종으로 확인되었다. 본 연구에서 자기조직화지도를 활용하여 4개 그룹으로 분류된 결과를 기초로 랜덤 포레스트 모델과 지표종 분석을 적용하였을 때 그룹별 지표종 구성과 그룹별 서식지 특성과 상호 연관성을 보였다. 또한 그룹별 우점하는 서식환경에 따라 관찰된 종의 분포패턴과 밀도가 뚜렷하게 구분이 되었다. 자기조직화지도와 지표종분석, 랜덤 포레스트 모델을 함께 적용한 분석은 서식지 환경에 따라 조류 서식 특징파악에 유용한 결과를 도출할 수 있을 것으로 판단된다.

관계적시점지도로 구성된 SOM을 이용한 가스배관 부식상태의 자율적 판단 방법 (A Method For Autonomous Determination Of Corrosion State Of Gas-pipeline Using RPM-based SOM)

  • 손충연;여지혜;고일주
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2011년도 제43차 동계학술발표논문집 19권1호
    • /
    • pp.137-140
    • /
    • 2011
  • 시설의 안전성 평가에 대한 연구는 안전성에 영향을 주는 데이터를 정량화하여 획일적인 자동 수행하는 안전관리가 주를 이루고 있다. 이와 달리 자율수행은 수집 된 상황 정보나 상태 데이터를 이용하여 안전성을 예측하고 사고 위험성을 경보하여 사고를 예방 할 수 있다. 본 연구에서는 다양한 시설물 중에서 가스배관의 부식에 대한 판단을 위해서 신경망의 대표적 비지도학습인 자기조직화지도를 적용한다. SOM의 적용에서는 주변효과를 보완하기 위해서 관계적관점지도로 맵을 구성한다. 학습 할 데이터는 가스배관의 방식전위이다. 배관의 부식상태를 확인하기 위하여 수집 된 데이터인 방식전위에는 부식에 대한 위험요인이 내재되어 있다. 학습 후 새로운 데이터가 입력되면 각 상태 군집의 중심뉴런과 맵핑된 뉴런의 유사도를 측정하여 배관의 부식상태를 결정한다. 제안 된 방법으로 판단 된 결과를 기존에 사람이 판단한 결과와 비교하여 검증한다. 이를 통해 배관의 부식상태를 자율적이고 신속하게 판단하여 지능화 된 가스배관 관리로 활용한다.

  • PDF

계층적 자기조직화 분류기를 이용한 다수 음성자판의 생성과 레이블링 (Creation and labeling of multiple phonotopic maps using a hierarchical self-organizing classifier)

  • 정담;이기철;변영태
    • 한국통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.600-611
    • /
    • 1996
  • 최근, 신경망 모델의 적응성과 학습성을 이용한 음성인식 연구가 진행되어 왔다. 그러나, 기존의 신경망 모델로는 한국어 음성의 조음결합의 처리 및 유사 음소간의 경계 분류가 용이하지 않다. 또한, 한 개의 형상지도를 이용하는 경우 이질적인 음성자료의 처리를 위한 학습속도의 급격한 증가와 균일한 학습 및 판별방법의 적용이 갖는 부정확성이 야기될 수 있다. 이에따라, 본 논문에서는 계층적 자기조직화 분류기(HSOC)를 이용한 신경망타자기를 설계하고, 관련 알고리즘들을 제안한다. 본 HSOC는 Kohonen의 자기조직화형상지도(SOFM)를 이용하여 학습시 입력되는 음소 데이타를 계층적인 구조를 갖는 다수의 형상 지도(map) 즉 음성자판에 배치한다. 또한 본 논문에서는 자판의 수효, 각 자판의 크기, 소속될 음소의 선택과 배치, 적합한 학습 및 인식기법의 자동 결정을 위한 알고리즘을 제시하고 실험하여 자기조절식인 음성자판을 구성하였다. 자판을 분류하는 방식을 언어학적 사전지식에 의존할 경우 언어학적 지식의 습득과 적용방법(예를 들면, 확장 음소의 처리)등을 결정하는 어려움을 가지는 반면, 본 HSOC를 이용하면 주어진 입력 데이타에 적합한 다수의 음성자판을 자기 조절식으로 구성할 수 있는 장점이 있다. 제안된 방식에 따라 최종 생성된 세 개의 한글 음성자판은 최적 자판과 최적 전처리기법을 갖추고있으며, 기존의 언어학적 지식과도 부합됨을 확인할 수 있었다.

  • PDF

반지도식 자기조직화지도를 이용한 wifi fingerprint 보정 방법 (Wifi Fingerprint Calibration Using Semi-Supervised Self Organizing Map)

  • 타이광퉁;정기숙;금창섭
    • 한국통신학회논문지
    • /
    • 제42권2호
    • /
    • pp.536-544
    • /
    • 2017
  • 무선 RSSI fingerprinting 방식은 기존 무선 인프라를 이용하면서 적정수준의 정확도를 얻을 수 있는 실내위치인식 방법 중의 하나이다. 하지만 라디오 맵 구성( fingerprint calibration) 과정에서 목표 환경의 다양한 위치에서 정확한 물리적 좌표와 무선 신호를 측정해야 하므로 시간과 노력이 많이 소요된다. 이 논문은 이러한 방식으로 위치 정보를 수집하지 않고 반지도식 자기조직화지도 학습 알고리즘을 사용하여 labeled RSSI를 얻고 RSSI 조합으로부터 맵을 구성하는 방법을 제안한다. 모의 데이터에 대한 실험을 통해 제안 방법이 fingerprint 데이터베이스로 부터 1%의 RSSI 샘플을 가지고 효과적인 전체 맵을 얻을 수 있다는 결론을 얻었다.

MCMC 결측치 대체와 주성분 산점도 기반의 SOM을 이용한 희소한 웹 데이터 분석 (Sparse Web Data Analysis Using MCMC Missing Value Imputation and PCA Plot-based SOM)

  • 전성해;오경환
    • 정보처리학회논문지D
    • /
    • 제10D권2호
    • /
    • pp.277-282
    • /
    • 2003
  • 웹으로부터 유용한 정보를 얻기 위한 연구는 현재 많이 진행되고 있다. 본 논문에서는 특히 웹 로그 데이터의 희소성에 대한 문제 해결과 이를 통한 웹 사용자의 군집화 방안에 대하여 연구하였다. MCMC 방법의 베이지안 추론에 의한 결측치 대체 기법을 이용하여 웹 데이터의 희소성을 제거하였고, 주성분에 의한 산점도를 통하여 형상지도의 차원을 결정한 자기 조직화지도를 이용하여 웹 사용자의 군집화를 수행하였다. 제안 기법은 기존의 방법들에 비해 모형의 정확도와 빠른 학습 시간을 제공하여 주었다. KDD Cup 데이터를 이용한 실험을 통하여 제안 방법에 대한 문제 해결 절차 및 성능 평가를 객관적으로 확인하였다.

실시간 침입탐지를 위한 자기 조직화 지도(SOM)기반 트래픽 속성 상관관계 메커니즘 (Traffic Attributes Correlation Mechanism based on Self-Organizing Maps for Real-Time Intrusion Detection)

  • 황경애;오하영;임지영;채기준;나중찬
    • 정보처리학회논문지C
    • /
    • 제12C권5호
    • /
    • pp.649-658
    • /
    • 2005
  • 네트워크 기반의 공격은 그 위험성과 피해의 규모가 크기 때문에 공격 초기에 빨리 탐지하는 것이 중요하다. 그러나 지도학습 데이터 마이닝을 이용한 네트워크상의 비정상 트래픽을 탐지하는 방법은 방대한 양의 데이터 전처리와 관리자의 분석이 요구되며 관리자의 분석이 정확하다는 보장이 없을 뿐만 아니라 각 네트워크의 실시간 특성을 고려하지 못하기 때문에 탐지의 어려움이 크다. 본 논문에서는 실시간 침입 탐지와 점진적 학습을 위해 비지도학습의 데이터마이닝 기법중 하나인 자기 조직화 지도를 기반으로 트래픽 속성 상관관계 메커니즘을 제안한다. 이는 세 단계로 이루어진다. 첫 번째 단계는 초기 학습이 이루어지는 단계로 비지도 학습을 통하여 성격이 비슷한 트래픽끼리 클러스터링 한 맵을 생성시킨다. 두 번째 단계는 맵의 각 클러스터가 정상과 비정상 트래픽의 클러스터로 구분되기 위해 각 공격별로 추출된 규칙(rule)을 적용하여 맵을 분석한다. 이 규칙은 지도 학습을 통한 규칙 기반의 방법으로, 각 데이터 항목마다 SOM을 이용한 속성별 맵의 상관관계(correlation) 분석을 통해 생성되었다. 마지막으로 분석된 맵을 이용하여 실시간 탐지와 함께 점진적 학습이 이루어지게 된다. 여러 실험을 통하여 비지도 학습과 지도 학습을 결합한 SOM 기반 트래픽 속성 상관관계 메커니즘이 지도 학습에 비해 실시간 탐지에 우수함을 증명하였다.

자기조직화지도와 GIS를 이용한 다차원 공중보건자료의 탐구적 분석 (Exploring Multidimensional Public Health Data Using Self Organizing Map and GIS)

  • 손철
    • Spatial Information Research
    • /
    • 제20권6호
    • /
    • pp.23-32
    • /
    • 2012
  • 본 연구에서는 2005년에서 2010년까지의 통계청 남성암 유형별 연령표준화 시군구 사망률 데이터에 대해 자기조직화지도와 GIS를 이용한 탐구적 자료 분석을 수행하여 이들 데이터에 의미 있는 패턴이 내재되어 있는지 분석하였다. 그리고 지역의 사회경제적 수준을 대표하는 변수로 선정된 지역별 가구주의 교육수준과 분석된 패턴이 어떤 관련이 있는지 검토하였다. 분석결과 우리나라 시군구는 남성암 사망원인 측면에서 독특한 특성을 가진 18개의 지역 군집으로 구분될 수 있으며, 이들 군집 내 속한 시군구가 공간적으로도 군집되는 경향이 있음을 보여주었다. 또한 가구주의 교육수준이 높은 군집이 낮은 군집에 비해 남성암 사망률이 낮은 경향을 보이지만 일부 암의 경우 교육수준이 높은 군집에서 사망률이 높음을 보여주었다. 이 결과는 지역의 사회경제적 요인, 자연환경적 요인 등 암의 발생 및 관리에 영향을 미치는 지역적 요인에 양의 공간적 자기상관이 존재하며, 이러한 공간적 자기상관이 다양한 유형의 암 원인 사망에 영향을 미친 결과로 해석되어질 수 있다. 또한 18개의 군집 중 서울의 강남구 및 서초구를 포함한 군집은 대부분 유형의 암 원인 사망률에서 전체 18개 군집 중 하위 수준임을 보여 우리나라 암의 예방, 발생, 관리와 관련된 중요원인이 사회경제적 요인일 수 있음을 암시하였다.

자기조직화 지도(SOM) 인공신경망 모형을 이용한 벤쳐기업의 지식경영 유형 세분화에 관한 연구-코스닥 상장기업을 대상으로- (A Self-Organizing Map Neural Network Approach to Segmenting Knowledge Management Type of Venture Businesses in KOSDAG)

  • 이건창;권순재;이광용
    • 지능정보연구
    • /
    • 제7권2호
    • /
    • pp.95-115
    • /
    • 2001
  • 본 논문에서는 우리나라 코스닥시장에 상장된 벤처기업을 대상으로 하여 지식경영 유형을 세분화 하기 위한 방법론을 제시한다. 이 방법론은 우선, 해당 벤처기업에 대하여 설문조사를 통하여 이들 회사의 지식경영 요인을 도출한 다음, 이들 요인 값을 가지고 비감독학습 인공신경망 모형인 SOM을 가지고 4개의 의미 있는 군집을 유도하였다. 이들 군집은 벤처기업이 수행하는 다양한 지식경영 유형을 나타내는 것으로 판명되었으며, 이들 유형은 각각 하이테크형, 조직지식중심형, 정보기술 중심형, 단순형으로 분류된다.

  • PDF

거리 사상 함수 및 RBF 네트워크의 2단계 알고리즘을 적용한 서류 레이아웃 분할 방법 (A Two-Stage Document Page Segmentation Method using Morphological Distance Map and RBF Network)

  • 신현경
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권9호
    • /
    • pp.547-553
    • /
    • 2008
  • 본 논문에서는 2 단계 서류 레이아웃 분할 방법을 제안한다. 서류 분할의 1 차 단계는 top-down 계열의 영역 추출로서 모폴로지 기반의 거리 함수를 사용하여 주어진 영상 데이타를 사각형 영역들로 분할한다. 거리 사상 함수를 통한 예비 결과는 성능 개선을 위한 2 차 단계의 입력 변수로 작용한다. 서류 분할의 2차 단계로서 기계 학습 이론을 적용한다. 통계 모델을 따르는 RBF 신경망을 선택하였고, 은닉 층의 설계를 위해 코호넨 네트워크의 자기 조직화 성격을 활용한 데이타 군집화 기법을 기반으로 하였다. 본 논문에서는 300개의 영상에서 추출된 영역 데이타를 통해 학습된 신경망이 1차 단계에서 도출된 예비 결과를 개선함을 연구 결과로 제시하였다.

RGB 항공영상을 이용한 합류부 전단층 특징 추출법 (Confluence shear layer feature extraction method using RGB aerial imagery)

  • 노효섭;박용성
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.277-277
    • /
    • 2021
  • 합류부는 인공수로 또는 자연하천에서 흔히 존재하며 매우 복잡한 흐름 구조가 발생하는 곳이다. 특히 본류와 지류의 유속장의 차이에 따라 발생하는 전단층은 흐름과 물질이 혼합되는 경계면이 되며, 흐름 구조가 전단층을 따라 발달한다는 특징으로 인해 수리학적으로 매우 중요하다. 최근 원격탐사 기법의 발전에 따라 위성이나 드론과 같은 무인 이동체를 이용한 하천 계측법이 수질 및 지형변화 연구들에 광범위하게 적용되고 있다. 그 중 RGB 항공영상은 해상도가 높고 취득 비용이 저렴하여 확장성 및 활용도가 높다. 본 연구에서는 합류부 전단층이 촬영된 RGB 항공 영상을 이용해 합류부 전단층 분석에 활용하는 방법을 제안한다. 제안되는 방법은 RGB 항공 영상에서 본류와 지류의 수체 영역을 각각 추출하기 위해 가우시안 혼합 모형(Gaussian mixture model)을 이용한다. 추출된 수체 영역에는 자기조직화지도(self-organizing map)을 적용하고 좌표 변환을 하여 정량적인 특징을 추출한다. 본 연구에서는 알고리듬의 적용 예로서 구글어스를 통해 확보된 낙동강-남강 합류부의 항공 영상을 분석한다. 본 추출법을 이용하면 접촉식 센서를 이용하는 기존의 전단층 계측 방법들에 비해 경제적이고 안전하며 합류부 흐름의 평면적 분석을 가능하게 할 수 있을 것으로 기대된다.

  • PDF