다양한 영역 검출 및 형태 특징 추출 방법 중에서 MSER과 SIFT를 응용한 방법들이 컴퓨터비전 분야에 많이 사용된다. 하지만 기존의 SIFT를 이용한 특징 추출 방법은 자기 변화에 민감한 특성을 지니며, MSER 방법은 이미지의 크기 변화에 민감하고, 이미지 유사성 검색에 그대로 적용하기에는 어려움이 많다. 본 논문에서는 스케일 피라미드, MSER 그리고 어파인(affine) 정규화 과정 등을 이용한 영역 특징 서술자를 제안한다. 제안한 방법은 어파인 정규화 방법과 스케일 피라미드를 사용하기 때문에 이미지의 크기, 회전 및 자기 변화에 불변하다. 다양한 이미지들을 이용하여 실험하고, 실험 결과에서 제안한 방법이 SIFT, PCA-SIFT, CE-SIFT 그리고 SURF 방법에 비해서 각각 20%, 38%, 11%, 24% 이상 좋은 이미지 검색 성능을 보이고 있다.
레이다 시스템, ranging 시스템, 확산 대역 통신 (spread spectrum communication) 시스템, 그리고 요즈음 각광받고 있는 코드분할방식 다중통신 (CDMA com-munication) 시스템에서는 주지하다시피 상관성(correlation) 이 좋은 수열(sequence)들위 사용이 필수 불가결하다. 수열의 상관성은 그 수열 자신의 상관성이냐 다른 수열간의 상관성이냐에 따라 자기상관관계(crosscorrelation)로 나누어 생각할 수 있고 수열의 주기성의 유무에 따라 주기적 상관관계(Periodic correlation)와 비주기적 상관관계(aperiodic correla-tion)로 나누어 볼 수 있다. 여기서 수열의 상관성이 좋다는 말은 정규화된 수열의 자기상관계수(autocorrelation coefficient)와 수열 간의 교차상관 계수(crosscorrelation coefficient)의 최대 크기가 수열의 길이에 비해 상대적으로 작은 값을 갖는다는 것을 의미한다. 본 논문에서는 주기성을 갖는 이진수열군의 하나인 bent수열과 이 bent수열을 구성하는데 기본이 되는 bent함수를 중심으로 주기적 상관성이 우수한 여러 수열군에 대해 알아보고자 한다.
사람은 한 장소를 방문할 때 순환 패턴이 있으며, 이 패턴에 여러 싸이클의 경향이 있다. 요즘은 스마트폰 및 기타 휴대용 장치로 개인 이동성 데이터를 수집하는 것이 가능하다. 이러한 장치는 다양한 위치 데이터를 수집하고 여러가지 방법으로 분석할 수 있게 해준다. 위치 수집기를 기반으로 지구 위치 데이터에서 추출된 사람의 이동성 모델을 수립하고, 위치 클러스터를 방문자의 순환 패턴을 조사할 수 있다. 수년 동안 수집된 개인의 이동성 모델을 토대로 클러스터 재방문 시간을 계산 후 분석하여 그래프로 시각화하였다. 시간 순서의 위치 클러스터와 방문 클러스터에 대한 위치 데이터는 1 분 단위로 측정된다. 전체 데이터 방문 횟수는 15 분마다 정규화하고, 자원 봉사자의 다양한 지리적 위치 데이터 셋에 대해 방문의 순환 패턴은 자기 상관, 자기 공분산 및 재방문 시간으로 살펴볼 수 있다.
현재 사용되고 있는 두뇌영상의 제거 방법은 비록 환자의 개인 정보를 보호하고 있으나, 과도한 제거로 정확한 두뇌영상의 무결성을 손실할 수 있다. 원래 두뇌의 영상과 동일한 두뇌 조직을 나타내면서 환자의 신원을 감출 수 있는 새로운 익명화 얼굴모델을 생성시키는 방법을 연구하였다. 제안방법은 두 단계로 구성되었다: 10명의 두뇌영상을 정규화시켜서 모조 두뇌 표본 영상을 생성하는 단계와 실험영상 두뇌의 외곽부를 모조 두뇌의 안면부로 대체시키는 단계이다. 전체 두뇌영상에서 두피와 두개골 영역을 분할하기 위하여 레벨셋 알고리즘을 적용하였다. 영역화된 모조 두뇌를 대상 두뇌영상에 동일하게 배치하고 정규화를 시켜서 익명화된 얼굴 모델을 생성하였다. 원래 영상과 변형된 영상의 두뇌 조직부의 밝기 변화를 비교하여 제안 알고리즘의 타당성을 실험하였다. 실험 결과 두 두뇌영상은 두뇌 조직에서 완전히 동일하면서 신원을 파악할 수 없는 것을 검증하였다.
주파수 영역에서의 적응 신호처리는 입력의 자기 상관 행렬에 이산 퓨리에 변환(DFT Discrete Fourier Transform)을 이용할 때 거의 대각선화 되는 특성으로 인해 시간영역 적응필터보다 주파수 영역 적응 필터가 빠르게 적응한다. 본 논문에서는 변형된 이산 퓨리에 변환(MDFT: modified DFT)을 이용하여 주파수 영역 적응 필터를 설계함으로써 안정한 수렴 속도를 갖는 잡음 제거 시스템을 제안한다. 제안한 구조는 MDFT를 이용하여 연산수를 최소화하며, 안정한 수렴을 유지하면서 블록 없는 처리를 할 수 있고, 최적의 수렴 속도를 위해 입력 자기 상관 행렬에 MDFT를 사용해 근사적으로 대각화 시키고 시간적으로 변하는 스텝 크기를 정규화 하는 고속 적응 잡음 제거(HANR: high speed adaptive noise reduction) 알고리즘이다. HANR 알고리즘을 적용한 필터는 DFT변환법을 사용한 LMS방법(non-proposed)보다 30%정도의 속도 개선이 있다.
자기공명확산텐서영상(diffusion tensor magnetic resonance image, DT-MRI)으로부터 얻어진 확산텐서는 잡음에 민감하므로 주 고유벡터(principle eigenvector, PEV)의 필드에도 잡음이 포함되기 쉽다. 신경다발영상은 잡음에 매우 민감한 PEV로부터 얻어지기 때문에 실제 신경다발의 방향과 다를 수 있다. 따라서 잡음을 제거하기 위한 정규화(regularization) 과정이 필요하다. 본 연구에서는 고유값과 고유벡터를 정규화 하기 위한 방법으로 Dyadic Sorting(DS) 방법을 사용하였고 이를 구현하기 위한 알고리듬을 제시하였다. DS 방법은 $3\times3$ 화소에서의 고유값-고유벡터 쌍의 오버랩 정도를 측정할 수 있는 Intervoxel overlap function을 이용하여 고유값, 고유벡터를 재배열하는 방법이다. 본 연구에서는 이 방법을 3차원으로 적용하여 주 고유 벡터가 $45^{\circ}$인 합성영상과 임상데이터에 적용하였고, 그 결과 임상데이터의 피질척수로에 적용한 경우 제안한 DS 방법이 중간값 필터 방법에 비하여 AAE, AFA가 각각 79.97%~83.64%, 85.62%~87.76% 우수함을 보였다.
최근 대학의 공학교육에서 학생 포트폴리오가 자기주도적 수행평가로 널리 활용되고 있다. 특히 여러 대학의 공학교육혁신센터와 한국공학인증원의 포트폴리오 경진대회를 개최하면서 많은 학생이 대학 전 과정의 수행실적을 담은 학생 포트폴리오에 참여하고 있다. 그러나 공학교육에서 캡스톤디자인 관련 과목을 제외한 정규 교과목에 교과목 포트폴리오를 적용하는 사례는 그리 많지 않은 것이 현실이다. 포트폴리오는 학습 관련 자료의 조직적인 수집과 비판적인 성찰의 기회를 주는 시스템이라 할 수 있다. 본 논문은 이러한 연구 배경으로 교과목 포트폴리오를 공학교육의 일반 정규 강좌인 2013년 1학기 자료구조 교과목에 적용한 사례 연구이다. 교과목 포트폴리오를 정규 교과목에 적용한 결과 교과목 포트폴리오는 학습에 효과적이었으며, 학습자는 학습의 탐구과정을 통하여 자기주도적인 학습능력을 키우고 학습과정에서도 자기 성찰로 학습과정을 체계적으로 관리할 수 있다고 판단된다.
전이학습을 수행한 심층 인공신경망을 압축센싱 심혈관 자기공명영상에 적용하였다. 전이학습은 선행학습 신경망의 구조나 필터 커널, 가중치를 현재의 학습이나 응용에 활용하는 방법이다. 전이학습은 학습 속도를 향상시키고, 학습 데이터가 제한적일 때 신경망의 일반화에 도움이 된다. 8명의 건강한 지원자가 참여한 심장 자기공명영상 실험에서 전이학습을 수행한 신경망은 단독학습 신경망에 비해 학습시간이 5배 이상 단축되었다. 시험 데이터에 대해서도 전이학습을 수행한 신경망은 전이학습을 수행하지 않은 신경망에 비하여 낮은 정규화 평균제곱오차와 향상된 재구성 영상화질을 보였다.
창원대학교 스마트융합 메카트로닉스 인력양성 사업단의 교육 목표는 1) 창조적 교육과정을 통한 지역거점 특성화, 2) 세계적인 수준의 경쟁력을 갖춘 기술 인력 양성, 3) 분석력, 창의력, 적응력 및 설계능력을 갖춘 능동적 기술인력 양성, 4) 시대의 환경변화를 선도하는 진취적 기술인력 양성, 5) 인재공급 및 취업률향상으로 정하였다. 이를 달성하기 위한 교육전략은 1) Major전문성(메카트로닉스심화, 공통실험교육 강화), 2) Global국제적감각(팀기반능력, 근접학문이해능력), 3) Creative지속성장 (Capstone Design, 현장적응교육)으로 정하였다. 따라서 메카트로닉스공통융합심화트랙 교육과정으로 기계, 전기전자제어, 신소재분야의 공통트랙으로 이론 30학점, 실험 6학점(16과목, 36학점)을 신설하여 운영하였다. 수강지도를 통한 교차이수권장 학생들의 자율선택기반을 조성하고, 현장적응교육, 캡스톤 디자인 2과목 7학점을 수강하도록 하였다. 학생의 본인주도 학습권을 인정하여 2학년 진학 시 학생본인직접 100% 자기 전공 선택 기회 제공하는 구조조정을 실하고, 타 전공 관련정보 상호교류, 학문간 통합교육, 조직의 유연성확보가 가능하도록 하였다. 교과목(정규/비정규)개편을 통해 개선된 현장 실무 형 내실화 교육의 실시하여 취업률을 향상시켰다. 따라서 창원대학교 신소재공학부는 기계, 전기전자에 관련된 기본소양을 의무적으로 학습하기 때문에 메카트로닉스 분야에서 필요한 신소재공학도를 육성하는 기반을 마련하였다.
음성신호에 내재한 배경잡음을 제거하는 단일입력 적응잡음제거 시스템을 구성하였다. 기존 방법에서는 프레임 단위로 분석된 음성신호의 피치 정보를 이용하여 적응여파기의 기준신호를 얻는데 비해 제안된 방법에서는 매 샘플마다 지연 정보를 추정하여 기준신호를 만든다. 입력되는 음성신호로부터 매 샘플시간마다 지연 정보를 구하기 위하여 일반적인 자기상관 함수와 평균절대차 함수로부터 재귀적 자기상관함수와 재귀적 평균절대차함수를 유도하였다. 정규화된 최소평균자승(NLMS) 적응알고리듬을 사용하는 단일입력 잡음제거 시스템에 제안된 지연추정 방법을 적용하여 백색 가우시안 잡음에 왜곡된 음성에 대해 음성개선 실험을 하였으며, 기존 방법과의 성능비교 실험을 하였다. 제안된 방법에 의한 음성개선이 기존 방법보다 음질 및 SNR면에서 더 좋은 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.