• Title/Summary/Keyword: 자기 보정 기법

Search Result 50, Processing Time 0.035 seconds

Study on Common Phase Offset Tracking Scheme for Single Carrier System with Frequency Domain Equalization (단일 반송파 주파수 영역 등화 시스템을 위한 공통 위상 추적 기법 연구)

  • Kim, Young-Je;Park, Jong-Hun;Cho, Jung-Il;Cho, Hyung-Weon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11C
    • /
    • pp.641-648
    • /
    • 2011
  • Frequency domain equalization is the most promising technology that has relatively low complexity in multipath channel. A frame of single carrier system with frequency domain equalization (SC-FDE) has cyclic prefix to mitigate effect of delay spread. After synchronization and equalization procedure on the SC-FDE system, common phase offset (CPO) that can introduce performance degradation caused by phase mismatch between transmitter and receiver oscillators is remained. In this paper, common phase offset tracking in frequency domain is proposed. To track CPO, constant amplitude zero autocorrelation code sequence as training sequence is adopted. By using numerical results, performance of mean square error is evaluated. The results show that MSE of CPO has similar performance compare to the time-domain estimation and there is no need of domain conversion.

A New Hybrid Evolutionary Programming Technique Using Sub-populations with Different Evolutionary Behaviors and Its Application to Camera Calibration (서로 다른 진화 특성을 가지는 부집단들을 사용한 새로운 하이브리드 진화 프로그래밍 기법과 카메라 보정 응용)

  • 조현중;오세영;최두현
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.9
    • /
    • pp.81-92
    • /
    • 1998
  • A new hybrid technique using several sub-populations having completely different evolutionary behaviors is proposed to increase the possibility to quickly find the global optimum of continuous optimization problem. It has three sub-populations. Two NPOSA algorithms showing good performance in the problem having a rugged fitness function are applied to two sub-populations and a self-adaptive evolutionary algorithm to the other sub-population. Sub-populations evolve in different manners and the interaction among these sub-populations lead to the global optimum quickly. The efficiency of this technique is verified through benchmark test functions. Finally, the algorithm with three sub-populations has been applied to seek for the optimal camera calibration parameters. After an error function has been defined using measured feature points of a calibration block, it has been shown that the algorithm searches for the camera parameters that minimize the error function.

  • PDF

Comparative Study of Functional Magnetic Resonance Imaging by Global Scaling Analysis (Global Scaling 분석방법에 따른 기능적 자기공명영상의 비교 연구)

  • Yoo, Dong-Soo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.1
    • /
    • pp.26-31
    • /
    • 2006
  • Purpose : To evaluate the effect of global scaling analysis on brain activation for sensory and motor functional MR imaging study. Materials and methods : Four normal subjects without abnormal neurological history were included. Arm extension-flexion movement was used for motor function and 1KHz pure tone stimulation was used for auditory function. Functional magnetic resonance imaging was performed at 3T MRI (GE, Milwaukee, USA) using BOLD-EPI technique and SPM2 was employed for data analysis. On data analysis, the brain activation images were obtained with and without global scaling by fixing other parameters such as motion correction and realignment. Results : The difference in brain activation between no scaling and global scaling was not large in case of right upper extremity movement (p<0.000001). For auditory test, brain activation with global scaling showed larger activation than that of without global scaling (p<0.05). Conclusion : A caution must be taken into account when analyzing functional imaging data with global scaling especially for functional study of small local BOLD signal change.

  • PDF

Assessment of Imaging Distortion in Magnetic Resonance Imaging for Stereotactic Radiosurgery: Through Phantom Study (뇌정위 방사선수술 시스템을 위한 자기공명영상의 공간적 왜곡의 측정 : 모형실험을 통한 연구)

  • 박선원;한문희;김동규;정현태;송인찬
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.7-13
    • /
    • 2000
  • Purpose : To assess the distortion of MRI with the Leksell stereotactic radiosurgery system in variable pulse sequence and imaging plane through phantom study, to find most adequate imaging plane and pulse sequence for stereotactic radiosurgery system. Materials and methods : We made the phantoms for MRI and get images in variable conditions and analyzed the image distortion using image analysis program, and statistically using paired student t-test. Results : The transeverse plane images had acceptable error ranges bless than 1.5mm) in all pulse sequence in both the analysis of fiducial marker in stereotactic G-frame and the phantom study. The coronal plane images had unacceptable large errors (more than 1.7mm) in the analysis of fiducial marker in the stereotactic G-frame, but had corrected small errors (less than 1.5mm) in the phantom study. Conclusion : We find from the phantom study that the present MR machines are adequate for stereotactic surgery system in frequently used pulse sequences, and imaging planes.

  • PDF

Using the Flux Observer for Sensorless SRM Parameter Error Correction Method (자속 관측기를 이용한 센서리스 SRM의 파라미터 오차보정방식)

  • Lim, Geun-Min;Ahn, Jin-Woo;Lee, Dong-Hee;Kim, Byeong-Han
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.850-851
    • /
    • 2011
  • 본 논문은 SRM의 센서리스 속도제어를 위한 슬라이딩 모드 자속관측기법을 적용하고, 초기기동에서 센서리스 영역까지의 천이구간에서는 동일한 센서리스 추정방식과 계산된 자속의 오차 성분으로 오픈루프 상태에서 속도리플을 억제할 수 있는 방식과 전동기의 온도 및 파라미터 변화에 의한 자속 오차 성분으로 인해 발생하는 위치 추정오차를 보상하기 위한 새로운 추정위치 보상기를 제안한다. 제안된 추정위치 보상기는 SRM의 자기적인 특성에 의해 발생하는 인덕턴스 변곡점 위치를 실제 위치로 가정하여 추정된 센서리스 위치를 순시적으로 보상하는 방식이다.

  • PDF

On-line Magnetic Distortion Calibration Method for a Magnetometer (지자기 센서의 온라인 왜곡 보정기법)

  • Kim, Tae-Yeon;So, Chang-Ju;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.819-822
    • /
    • 2012
  • This paper describes an on-line magnetic distortion calibration procedure for a magnetometer. The horizontal magnetic field is calculated through the earth magnetic field sensed by 3-axes magnetometer. The ellipse equation is derived from a set of horizontal magnetic field data using least square method and calibration parameters are determined. The calibration process is performed iteratively until parameters are not renewed, and experimental results show the effectiveness of the devised method.

Background Gradient Correction using Excitation Pulse Profile for Fat and $T_2{^*}$ Quantification in 2D Multi-Slice Liver Imaging (불균일 자장 보정 후처리 기법을 이용한 간 영상에서의 지방 및 $T_2{^*}$ 측정)

  • Nam, Yoon-Ho;Kim, Hahn-Sung;Zho, Sang-Young;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.6-15
    • /
    • 2012
  • Purpose : The objective of this study was to develop background gradient correction method using excitation pulse profile compensation for accurate fat and $T_2{^*}$ quantification in the liver. Materials and Methods: In liver imaging using gradient echo, signal decay induced by linear background gradient is weighted by an excitation pulse profile and therefore hinders accurate quantification of $T_2{^*}$and fat. To correct this, a linear background gradient in the slice-selection direction was estimated from a $B_0$ field map and signal decays were corrected using the excitation pulse profile. Improved estimation of fat fraction and $T_2{^*}$ from the corrected data were demonstrated by phantom and in vivo experiments at 3 Tesla magnetic field. Results: After correction, in the phantom experiments, the estimated $T_2{^*}$ and fat fractions were changed close to that of a well-shimmed condition while, for in vivo experiments, the background gradients were estimated to be up to approximately 120 ${\mu}T/m$ with increased homogeneity in $T_2{^*}$ and fat fractions obtained. Conclusion: The background gradient correction method using excitation pulse profile can reduce the effect of macroscopic field inhomogeneity in signal decay and can be applied for simultaneous fat and iron quantification in 2D gradient echo liver imaging.

Implementation of the Azimuth Correction Device using Astronomical Observation (천측을 이용한 방위 보정 장치의 구현)

  • Lim, Jin-Kook;Yim, Jae-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.846-854
    • /
    • 2017
  • In this paper, we proposed a method to reduce the error of compass by combining the ceiling technique used in the past with modern IT technology. We combined an encoder and the Azimuth Circle for applying an algorithm. The algorithm is able to calculate the true north by using astronomical observation. Finally, we implemented the embedded system possible to indicate various situations and perform calculations. As a result, it isn't only able to calculate the true north with an error of about $0.2^{\circ}$ but also takes less than 5 seconds. Originally, using astronomical observation requires more than 5minutes. So it is analyzed as convenient by solving the problem of taking lots of time. Especially, we present the tolerance less than $0.5^{\circ}$ by the analysis of the existing gyrocompass and the bearing standard of IMO. In conclusion, we clearly confirm that the results of this paper are possible to reduce the error of various compasses in a real world.

(Distance and Speed Measurements of Moving Object Using Difference Image in Stereo Vision System) (스테레오 비전 시스템에서 차 영상을 이용한 이동 물체의 거리와 속도측정)

  • 허상민;조미령;이상훈;강준길;전형준
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.9
    • /
    • pp.1145-1156
    • /
    • 2002
  • A method to measure the speed and distance of moving object is proposed using the stereo vision system. One of the most important factors for measuring the speed and distance of moving object is the accuracy of object tracking. Accordingly, the background image algorithm is adopted to track the rapidly moving object and the local opening operator algorithm is used to remove the shadow and noise of object. The extraction efficiency of moving object is improved by using the adaptive threshold algorithm independent to variation of brightness. Since the left and right central points are compensated, the more exact speed and distance of object can be measured. Using the background image algorithm and local opening operator algorithm, the computational processes are reduced and it is possible to achieve the real-time processing of the speed and distance of moving object. The simulation results show that background image algorithm can track the moving object more rapidly than any other algorithm. The application of adaptive threshold algorithm improved the extraction efficiency of the target by reducing the candidate areas. Since the central point of the target is compensated by using the binocular parallax, the error of measurement for the speed and distance of moving object is reduced. The error rate of measurement for the distance from the stereo camera to moving object and for the speed of moving object are 2.68% and 3.32%, respectively.

  • PDF

Automatic Left Ventricle Segmentation Algorithm using K-mean Clustering and Graph Searching on Cardiac MRI (K-평균 클러스터링과 그래프 탐색을 통한 심장 자기공명영상의 좌심실 자동분할 알고리즘)

  • Jo, Hyun-Wu;Lee, Hae-Yeoun
    • The KIPS Transactions:PartB
    • /
    • v.18B no.2
    • /
    • pp.57-66
    • /
    • 2011
  • To prevent cardiac diseases, quantifying cardiac function is important in routine clinical practice by analyzing blood volume and ejection fraction. These works have been manually performed and hence it requires computational costs and varies depending on the operator. In this paper, an automatic left ventricle segmentation algorithm is presented to segment left ventricle on cardiac magnetic resonance images. After coil sensitivity of MRI images is compensated, a K-mean clustering scheme is applied to segment blood area. A graph searching scheme is employed to correct the segmentation error from coil distortions and noises. Using cardiac MRI images from 38 subjects, the presented algorithm is performed to calculate blood volume and ejection fraction and compared with those of manual contouring by experts and GE MASS software. Based on the results, the presented algorithm achieves the average accuracy of 6.2mL${\pm}$5.6, 2.9mL${\pm}$3.0 and 2.1%${\pm}$1.5 in diastolic phase, systolic phase and ejection fraction, respectively. Moreover, the presented algorithm minimizes user intervention rates which was critical to automatize algorithms in previous researches.