• Title/Summary/Keyword: 자기회귀 근사

Search Result 9, Processing Time 0.019 seconds

자기회귀계수에 대한 소표본 점근추론

  • Na, Jong-Hwa;Kim, Jeong-Suk;Jang, Yeong-Mi
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.209-213
    • /
    • 2005
  • 본 논문에서는 1차 자기회귀모형에서 자기회귀계수에 대한 여러 가지 추정량들의 분포함수에 대한 근사적추론 방법에 대해 연구하였다. 이차형식에 대한 안장점근사의 결과를 이용한 이 근사법은 여러 형태의 추정량들에 대해 근사분포의 유도과정이 불필요하며, 소표본은 물론 통계적 추론의 주요 관심영역에서의 근사정도가 매우 뛰어난 장점을 가지고 있다. 모의실험을 통해 Edgeworth근사를 비롯한 기존의 여러 근사법보다 효율이 뛰어남을 확인하였다.

  • PDF

Small Sample Asymptotic Inferences for Autoregressive Coefficients via Saddlepoint Approximation (안장점근사를 이용한 자기회귀계수에 대한 소표본 점근추론)

  • Na, Jong-Hwa;Kim, Jeong-Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.1
    • /
    • pp.103-115
    • /
    • 2007
  • In this paper we studied the small sample asymptotic inference for the autoregressive coefficient in AR(1) model. Based on saddlepoint approximations to the distribution of quadratic forms, we suggest a new approximation to the distribution of the estimators of the noncircular autoregressive coefficients. Simulation results show that the suggested methods are very accurate even in the small sample sizes and extreme tail area.

Residual-based copula parameter estimation (잔차를 이용한 코플라 모수 추정)

  • Na, Okyoung;Kwon, Sunghoon
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.267-277
    • /
    • 2016
  • This paper considers we consider the estimation of copula parameters based on residuals in stochastic regression models. We prove that a semiparametric estimator using residual empirical distributions is consistent under some conditions and apply the results to the copula-ARMA model. We provide simulation results for illustration.

A Bayesian test for the first-order autocorrelations in regression analysis (회귀모형 오차항의 1차 자기상관에 대한 베이즈 검정법)

  • 김혜중;한성실
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.1
    • /
    • pp.97-111
    • /
    • 1998
  • This paper suggests a Bayesian method for testing first-order markov correlation among linear regression disturbances. As a Bayesian test criterion, Bayes factor is derived in the form of generalized Savage-Dickey density ratio that is easily estimated by means of posterior simulation via Gibbs sampling scheme. Performance of the Bayesian test is evaluated and examined based upon a Monte Carlo experiment and an empirical data analysis. Efficiency of the posterior simulation is also examined.

  • PDF

Bayesian Method for the Multiple Test of an Autoregressive Parameter in Stationary AR(L) Model (AR(1)모형에서 자기회귀계수의 다중검정을 위한 베이지안방법)

  • 김경숙;손영숙
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.1
    • /
    • pp.141-150
    • /
    • 2003
  • This paper presents the multiple testing method of an autoregressive parameter in stationary AR(1) model using the usual Bayes factor. As prior distributions of parameters in each model, uniform prior and noninformative improper priors are assumed. Posterior probabilities through the usual Bayes factors are used for the model selection. Finally, to check whether these theoretical results are correct, simulated data and real data are analyzed.

Estimating GARCH models using kernel machine learning (커널기계 기법을 이용한 일반화 이분산자기회귀모형 추정)

  • Hwang, Chang-Ha;Shin, Sa-Im
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.419-425
    • /
    • 2010
  • Kernel machine learning is gaining a lot of popularities in analyzing large or high dimensional nonlinear data. We use this technique to estimate a GARCH model for predicting the conditional volatility of stock market returns. GARCH models are usually estimated using maximum likelihood (ML) procedures, assuming that the data are normally distributed. In this paper, we show that GARCH models can be estimated using kernel machine learning and that kernel machine has a higher predicting ability than ML methods and support vector machine, when estimating volatility of financial time series data with fat tail.

Robust confidence interval for random coefficient autoregressive model with bootstrap method (붓스트랩 방법을 적용한 확률계수 자기회귀 모형에 대한 로버스트 구간추정)

  • Jo, Na Rae;Lim, Do Sang;Lee, Sung Duck
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.99-109
    • /
    • 2019
  • We compared the confidence intervals of estimators using various bootstrap methods for a Random Coefficient Autoregressive(RCA) model. We consider a Quasi score estimator and M-Quasi score estimator using Huber, Tukey, Andrew and Hempel functions as bounded functions, that do not have required assumption of distribution. A standard bootstrap method, percentile bootstrap method, studentized bootstrap method and hybrid bootstrap method were proposed for the estimations, respectively. In a simulation study, we compared the asymptotic confidence intervals of the Quasi score and M-Quasi score estimator with the bootstrap confidence intervals using the four bootstrap methods when the underlying distribution of the error term of the RCA model follows the normal distribution, the contaminated normal distribution and the double exponential distribution, respectively.

A New Bootstrap Simulation Method for Intermittent Demand Forecasting (간헐적 수요예측을 위한 부트스트랩 시뮬레이션 방법론 개발)

  • Park, Jinsoo;Kim, Yun Bae;Lee, Ha Neul;Jung, Gisun
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.3
    • /
    • pp.19-25
    • /
    • 2014
  • Demand forecasting is the basis of management activities including marketing strategy. Especially, the demand of a part is remarkably important in supply chain management (SCM). In the fields of various industries, the part demand usually has the intermittent characteristic. The intermittent characteristic implies a phenomenon that there frequently occurs zero demands. In the intermittent demands, non-zero demands have large variance and their appearances also have stochastic nature. Accordingly, in the intermittent demand forecasting, it is inappropriate to apply the traditional time series models and/or cause-effect methods such as linear regression; they cannot describe the behaviors of intermittent demand. Markov bootstrap method was developed to forecast the intermittent demand. It assumes that first-order autocorrelation and independence of lead time demands. To release the assumption of independent lead time demands, this paper proposes a modified bootstrap method. The method produces the pseudo data having the characteristics of historical data approximately. A numerical example for real data will be provided as a case study.

End-to-end non-autoregressive fast text-to-speech (End-to-end 비자기회귀식 가속 음성합성기)

  • Kim, Wiback;Nam, Hosung
    • Phonetics and Speech Sciences
    • /
    • v.13 no.4
    • /
    • pp.47-53
    • /
    • 2021
  • Autoregressive Text-to-Speech (TTS) models suffer from inference instability and slow inference speed. Inference instability occurs when a poorly predicted sample at time step t affects all the subsequent predictions. Slow inference speed arises from a model structure that forces the predicted samples from time steps 1 to t-1 to predict the sample at time step t. In this study, an end-to-end non-autoregressive fast text-to-speech model is suggested as a solution to these problems. The results of this study show that this model's Mean Opinion Score (MOS) is close to that of Tacotron 2 - WaveNet, while this model's inference speed and stability are higher than those of Tacotron 2 - WaveNet. Further, this study aims to offer insight into the improvement of non-autoregressive models.