Journal of the Korean Data and Information Science Society
/
제20권3호
/
pp.475-483
/
2009
본 연구에서는 한국종합주가지수 데이터를 이용하여 다양한 비선형 시계열 모형들을 소개하였다. 조건부 평균의 선형 모형으로는 상수항 모형, 자기회귀 모형을 살펴보았으며, 비선형 모형으로는 분계점 자기회귀 모형, 지수적 자기회귀 모형을 살펴보았다. 조건부 분산 모형으로는 일반 자기회귀 이분산 모형과 지수적 일반 자기회귀 이분산 모형, Glosten 등 (1993)의 모형 그리고 일반화 이항멱변환 분계점 일반 자기회귀 이분산 모형을 살펴보았다. 한편, 일반화 이항멱변환 분계점 일반 자기회귀 이분산 모형은 대표적 비대칭성 이분산성 모형인 Zakoian (1993) 모형과 Li와 Li (1996) 모형을 효과적으로 통합할 수 있는 변형된 모형이다. 본 연구에서는, 한국종합주가지수 데이터를 분석하여 새로운 모형의 효율성을 증명하였다.
Communications for Statistical Applications and Methods
/
제15권6호
/
pp.925-937
/
2008
본 논문에서는 주식시장에서 거래되는 다수의 주식거래종목들을 몇 개의 그룹으로 군집화하는 주제를 연구한다. 시간에 관계없이 분산이 일정한 ARMA모형과 다르게, 주가, 환율 등의 금융시계열자료에서는 조건부 이분산성을 따르게 된다. 또한, 많은 사람들이 금융시계열자료에서 관심을 갖는 것은 바로 이 변동성이다. 그러므로, 이 연구에서는 조건부 이분산성을 모형화하기에 적합하다고 알려진 일반화 조건부 이분산성 자기회귀모형에 초점을 맞춘다. 먼저 두 개의 주식종목들 사이에 변동성(volatility)의 유사성 그리고 구조의 유사성을 재는 거리를 정의하고, 모의실험을 수행한다. 실증자료로 최근 3년 동안 관찰된 국내 11개 주가의 수익률을 변동성과 구조에 따라 군집화한다.
본 논문에서는 다변량 시계열 모형 진단을 위해 잔차의 자기상관성 유무를 확인하기 위한 와일드 붓스트랩(wild bootstrap) Ljung-Box(LB) 검정통계량을 연구하였다. 일반적으로 LB 검정은 오차가 서로 독립이며 동일한 분포를 따른다는 IID 가정 하에 유도되는 점근적 카이제곱 분포를 이용한다. 한편 금융시계열 자료는 분산에 조건부 이분산성이 존재하기 때문에 오차의 IID 가정을 만족시키지 못하며 이에 따라 점근적 분포를 이용한 LB 검정은 제1종의 오류를 만족시키지 못하게 된다. 이를 극복하기 위해 와일드 붓스트랩을 이용한 LB 검정법을 제안하고 그 성질을 연구하고자 한다. 벡터자기회귀 모형과 벡터오차수정 모형 등의 다양한 다변량 시계열 모형을 이용하여 모의실험을 실시하는 한편, 코스피 200지수와 지수선물 자료를 이용한 실증분석을 통해 와일드 붓스트랩을 이용한 LB 검정법이 조건부 이분산성의 부정적인 영향을 효과적으로 제거할 수 있음을 입증하였다.
본 연구에서는 조건부 핵밀도함수와 CAFPE(Corrected Asymptotic Final Prediction Error) 차수결정 방법에 근거한 비매개변수적 비선형 자기회귀 (Nonlinear AutoRegressive, NAR) 모형을 소개하고 이를 SOI(Southern Oscillation Index)에 적용하였다. SOI 자료에 대해서 선형 AR 모형을 적용하였으나 잔차에 대한 검정결과 이분산성(heteroscedasticity)을 나타내었다. 또한 BDS(Brock-Dechert-Sheinkman) 검정에서 비선형성이 존재함을 확인하였다. 따라서 NAR 모형에 SOI 자료를 적용시켰다. CAFPE를 이용하여 가장 적합한 모형으로 지체 1, 2와 4가 선택되었으며 조건부 평균함수를 추정하여 SOI 자료를 모의한 결과 잔차에 대해서 정규성과 이분산성 가정이 Jarque-Bera 검정과 ARCH-LM 검정에서 각각 기각되었으며 또한 조건부 표준편차함수의 최적 차수로 3, 8과 9가 CAPFE를 통해 선택되었다. 조건부 평균함수와 표준편차함수를 모두 고려한 모형에 대한 잔차 검정 결과 잔차의 I.I.D 가정을 만족하였으며 특히, BDS 검정에서 신뢰구간 95%와 99%에서 모두 만족한 결과를 나타내었다. 마지막으로 전체의 15%에 해당하는 SOI 자료에 대해서 One-Step 예측을 수행하였으며 선형 모형에 비해 평균제곱예측오차가 7% 적게 나타났다. 따라서, NAR 모형은 여타의 매개변수적 방법과 달리 모형 선택에 있어 자유로우며 비선형성을 고려할 수 있는 모형으로서 SOI 자료와 같은 비선형 자료를 위한 모의방법으로 선형 모형에 비해 많은 장점을 가지고 있다.
본 논문에서는 분산이 각각 다른 이분산성을 갖는 비선형 시계열 자료를 가지고, 비선형 시계열 모형중 1차 일반화 확률계수 자기회귀모형(GRCA(1))과 자료의 형태에 상관없이 적용할 수 있는 신경망 모형을 이용하여 예측을 해서 어느 모형이 최소 평균예측오차제곱의 기준에서 비선형 시계열 자료의 예측에 적합한지를 비교 분석 하는 것이다. 조건부 이분산 모형에 따르는 자료로 확인된 종합주가지수 변동율에 대한 사례 분석 결과를 보면 신경망 모형은 단기 예측에서 좋은 예측 결과를 보였고, 비선형 모형인 GRCA(1) 모형은 장기 예측에서 좋은 예측 결과를 보여 주었다.
시간의 경과에 따라 관측된 시계열 자료를 통해 데이터 분석을 하고 적당한 모형을 생성함으로써 미래 시점을 예측하는 방법들은 그 동안 많은 방법들이 제시되었고 연구 되고 있다. 그 중 최근 들어 과거의 데이터를 바탕으로 관측된 각 시점에서의 분산을 서로 다른 분산(조건부 이분산성)을 따른다고 가정하고, 이를 분석하는 모형(ARCH, GARCH, Stochastic Volatility(SV))들이 옵션 가격분석이나 환율 변화 등 경제 시계열자료의 예측 모형을 위하여 활발히 연구되고 있다. 본 논문에서는 한국의 KOSPI 데이터(1995년 1월 3일부터 2001년 12월 28일, 총 1906일)를 바탕으로 (조건부) 우도함수 모수 추정 방법을 이용한 GARCH(1,1) 모형과, MCMC 방법을 이용하여 모수를 추정한 SV 모형을 적용시켜 보고 각 모형들의 예측 정확도를 비교하여 보았다.
Journal of the Korean Data and Information Science Society
/
제24권6호
/
pp.1103-1112
/
2013
탐색적 자료분석에서는 자료를 통계적 모형에 바로 적합시키기 보다는 자료를 있는 그대로 보려는 데 주안점을 둔다. 우리는 시계열 자료에 대한 그래픽 탐색적 자료분석방법의 하나로서 재현그림을 사용할 수 있다. 재현그림의 장점은 통계모형에 대한 가정 없이 시계열 자료의 구조적 패턴을 확인할 수 있고 이 패턴을 통하여 탐색적으로 시계열 데이터의 구조 변화점을 한 눈에 확인할 수 있다는 데 있다.
Journal of the Korean Data and Information Science Society
/
제27권2호
/
pp.327-335
/
2016
2008년 글로벌 금융위기 이후 중국은 위안화 국제화의 점진적 추진을 진행하면서 중국상하이 외환시장과 중국홍콩 외환시장에서 거래되는 통화인 역내위안화와 역외위안화를 형성시켰다. 본 연구는 위안화 국제화와 점진적인 중국 자본계정 개방에 따라 급변하는 외환시장상황의 변동성을 정확하게 파악하기 위해서 GARCH모형 (일반화된 자기회귀 조건부이분산성모형)에 다단계인공신경망을 결합한 MLP-GARCH 모형과 GARCH모형과 기계학습의 일종인 딥러닝 (deep learning)을 통합한 DL-GARCH을 가지고 위안화 변동성예측을 비교 실험과 분석을 하였다. 비교분석 결과 DL-GARCH 모형은 MLP-GARCH보다 모형 위안화 역내 외 환율변동성 예측 면에서 더욱 더 개선된 예측값을 제공하였다. 그래서 이분산시계열모형을 딥러닝과 결합한 DL-GARCH 모형은 시계열의 환율 변동성 예측 문제에 딥러닝을 응용할 수 있음을 확인하였다. 향후 이분산시계열과 결합된 딥러닝 모형은 다른 금융시계열 데이터에 응용하여 그 일반화 가능성을 높일 수 있을 것이다.
변동성 모형을 이용한 국내의 주택가격에 대한 기존의 연구에서는 변동성모형을 어떻게 주택시장분석에 적용할 수 있는지를 보여주고 있지만 최근 국내의 지역주택시장들에 나타나는 유의미한 변화를 반영하는데는 한계가 존재할 수 밖에 없다. 본 연구에서는 변동성모형을 적용하여 전국의 각 지역별 주택시장을 분석하고 이를 통해 미래의 지역별 주택시장의 가격변동을 실제적으로 예측하였다. AR(1)-ARCH(1), AR(1)-GARCH(1,1), AR(1)-EGARCH(1,1,1) 모형을 통하여 지역주택시장에 ARCH 및 GARCH효과가 존재하는 것을 확인하였다. 그리고 각 지역의 예측력을 비교하여 지역별 최적예측모형을 선정하였으며, 이러한 지역별 최적모형의 선정이 실제적으로 어떻게 이용될 수 있는지를 보여주기 위하여 2017년 하반기의 각 지역주택시장의 가격변동을 선정된 지역별 최적모형을 이용하여 예측하였다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.