• Title/Summary/Keyword: 자기착화

Search Result 36, Processing Time 0.025 seconds

Study on the Effect of Thermal Stratification on DME/n-Butane HCCI Combustion (열적성층화가 DME/n-Butane 예혼합압축자기착화연소에 미치는 영향에 관한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1035-1042
    • /
    • 2010
  • The thermal stratification effect has been thought as one of the way to avoid dramatically generating the heat from HCCI combustion. We investigate the effect of thermal stratification on HCCI combustion fueled by DME and n-Butane. The thermal stratification occurs in a combustion chamber of a rapid compression machine with premixture by buoyancy effect that is made of fuel and air. The premixture is then adiabatically compressed, and during the process, the in-cylinder gas pressure is measured and two-dimensional chemiluminescence images are prepared and analyzed. Under the thermal stratification, the LTR starting time and the HTR starting time are advanced than that of homogeneous case. Further, the LTR period and the luminosity duration under homogeneous conditions are shorter than the corresponding quantities under stratified conditions. Additionally, under stratified conditions, the brightest luminosity intensity is delayed longer than that of homogeneous condition.

The investigation of Diesel Spray Combustion in DME HCCI (DME 예혼합기를 분위기로 하는 디젤 분무의 연소에 관한 연구)

  • Lim, Ock-Taeck;Iida, Norimasa
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3329-3334
    • /
    • 2007
  • The purpose of the research is to investigate of diesel spray combustion for simultaneously reduce way NOx and PM. The pressure diesel injection were done into intermediates that are generated by very lean DME HCCI combustion using a RCM. The concentration of intermediate could not be directly measured; we estimated it by CHEMKIN calculation. DME HCCI characteristic is surveyed. Validations of the CHEMKIN calculation were confirmed pressure rise of an experiment and pressure rise of a calculation. Using a framing streak camera captured two dimensional spontaneous luminescence images from chemical species at low temperature reaction(LTR) and high temperature reaction (HTR). Also, the combustion events were observed by high-speed direct photography, the ignition and combustion were analyzed by the combustion chamber pressure profiles.

  • PDF

An Investigation of a Stratified Charge Mixture's HCCI Combustion Processes Using a Rapid Compression Machine (급속압축장치를 이용한 HCCI기관에서 층상혼합기에 의한 압력상승률의 저감효과에 대한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.1-8
    • /
    • 2010
  • The introduction of mixture heterogeneity has been considered to be one of the ways to avoid knocking, as it reduces the pressure rise rate in HCCI Combustion. The purpose of this research was to investigate the effects of heterogeneity, in particular thermal stratification and fuel strength stratification, on HCCI Combustion fueled with DME and n-Butane. Thermal stratification is formed in the Combustion Chamber of a Rapid Compression Machine with three kinds of pre-mixture, each with different properties. The stratified charge mixture was adiabatically compressed, throughout which cylinder gas pressure and two-dimensional chemiluminescence images were measured and analyzed.

Influences of Complexing Agents on the Formation of the Perpendicular Magnetic Film by the Electroless Plating (무전해 도금에 의한 수직자기 박막제조시의 착화제의 영향)

  • Kim, Yeong-U;Park, Jeong-Il;Park, Gwang-Ja;Kim, Jo-Ung;Ham, Yong-Muk;Lee, Ju-Seong
    • Journal of the Korean institute of surface engineering
    • /
    • v.20 no.4
    • /
    • pp.135-143
    • /
    • 1987
  • Various complexing agents were investigated to see the effects on the normal orientation of HCP structure of Co-alloy to the film plane in ammoniacal electroless plating bath. To obtain the optimum condition, several complexing agents were investigated to compare the C-axis perpendicular orientation. Results were that succinate - citrate, malonate - succinate, malonate bath were useful for that purpose. Among these complexing agents, succinate - citrate system was obtained as the best one. X-ray diffraction patterns were used to compare the film properties with C-axis perpendicular orientation.

  • PDF

Mg-Al합금의 조성비율에 따른 발화온도특성

  • Han, U-Seop;Lee, Geun-Won
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.77-77
    • /
    • 2013
  • 최근의 산업활동에서는 신규 원료 개발과 생산 효율성을 높이기 위하여 분체 공정이 증가하고 있는데, 미세 분진의 취급으로 분진운의 형성과 착화가 용이해지므로 분진폭발이나 화재 위험성이 증가하고 있다. 분진을 안전하게 사용하고 저장, 취급하기 위해서는 착화 전의 위험성 지표로서 최저발화온도(MIT ; Minimum Ignition Temperature)를 사전에 파악해 두는 것이 중요하다. 분진농도의 발화온도는 장치 내의 발화위험성이나 분진 취급 공정의 사고예방대책 관리를 위한 실용적 관점에서 중요하게 활용되는 폭발특성값이다. 또한 분진의 발화온도는 분진농도에 의존하며 농도변화에 따른 가장 낮은 온도를 MIT라고 한다. 본 연구에서는 화재폭발사고 빈도가 줄지 않고 있는 Mg 및 Mg-Al합금(60:40 wt%, 50:50 wt%, 40:60 wt%)을 대상으로 조성비율에 따른 최저발화온도를 실험적으로 조사하였다. Mg 및 Mg-Al(60:40 wt%), Mg-Al(50:50 wt%), Mg-Al(40:60 wt%) 시료의 평균입경은 142, 160, 151, $152{\mu}m$이다. MIT실험장치는 IEC 61241-2-1(Methods for Determining the Minimum Ignition Temperatures of Dust, 1994)에 준거하여 제작하여 사용하였다. 실험장치는 가열로, 분진운 시료홀더, 온도조절장치, 압축공기 제어장치 등으로 구성되어 있다. 구체적인 실험방법은 시험분진를 분진홀더에 장착하고 0.5 bar의 압축공기를 0.3 sec 동안 사용하여 일정 온도로 가열된 로의 내부로 분진운을 부유시킬 때에 분진운이 발화하여 가열로 하단부의 개방구에까지 화염이 전파하는지를 디지털비데오카메라로 기록, 평가하여 발화 유무를 판정하였다. Mg합금에 대한 MIT를 측정한 결과 $740^{\circ}C$가 얻어졌으며, Mg-Al(60:40 wt%)의 MIT는 $820^{\circ}C$로 조사되었다. 그러나 Mg-Al(50:50 wt%) 및 Mg-Al(40:60 wt%)에 대해서는 최대 가열로의 설정온도를 $890^{\circ}C$까지로 하여 농도를 변화시키면서 조사하였으나 발화가 일어나지 않았다. 문헌에 따르면 Mg입자 표면의 산화피막은 다공성으로 일정 온도에서 산화반응이 시간에 따라 직선적으로 증가하는데 반하여, Al의 산화피막은 보호 작용을 하여 일정 온도에서 산화반응속도가 표면과 내부의 농도 기울기에 의한 확산속도에 의존한다고 보고하고 있다. 본 연구결과를 토대로 Mg-Al합금의 발화특성을 고찰해 보면, Mg-Al합금에서 자기 전파성이 작은 Al성분의 증가는 착화지연이 증가하여 연소성이 감소하여 최저발화온도의 증가로 이어지는 것으로 추정되었다. 또한 발화온도는 주어진 조건의 온도장에서 분진이 존재하는 시간 길이에 따라 변화하므로, 발화온도를 실험적으로 측정하는 경우에는 측정장치나 방법에 따라 달라지므로 사업장의 현장에 발화온도를 적용하는 경우에는 장치 내의 분진의 존재시간을 고려할 필요가 있다.

  • PDF

Effect of the Fuel Stratification on the Operating Range for a DME HCCI Engine based on Numerical Analysis (농도성충화가 DME HCCI 엔진의 운전 영역 확장에 미치는 영향에 관한 수치해석 연구)

  • Kwon, O-Seok;Jeong, Dong-Won;Back, Young-Soon;Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.256-263
    • /
    • 2009
  • The operating range of HCCI engine is narrow due to excessive rate of pressure rise on high load. The fuel stratification is proposed to solve the problem. The purpose of this study is to gain a better understanding of the effects of fuel stratification on reducing the pressure-rise rate at high load in HCCI combustion and to investigate that the operating range is expanded for fuel stratification in the preceding condition of initial temperature and equivalence ratios. The engine is fueled with Di-Methyl Ether (DME) which has unique 2-stage heat release. The computations were conducted using SENKIN application of the CHEMKINll kinetics rate code. Calculation result shows that proper fuel stratification prolongs combustion duration and reduce pressure rise rate.

Numerical Analysis for Booster Effect in DME HCCI Engine with Fuel Stratification (연료의 불균질성을 갖는 DME HCCI엔진에서 과급의 효과에 관한 수치해석)

  • Kwon, O-Seok;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.19-25
    • /
    • 2010
  • The purpose of this study is to gain a better understanding of the effects of fuel stratification on reducing the pressure-rise rate at high load in HCCI combustion. It was found that fuel stratification offers good potential to achieve a staged combustion event and reduced pressure-rise rates. The engine is fueled with Di-Methyl Ether (DME) which has unique 2-stage heat release. Numerical analysis is conducted with single and multi-zones model and detailed chemical reaction scheme is done by chemkin and senkin. Calculation result shows that proper fuel stratification prolongs combustion duration and reduce pressure rise rate. Besides IMEP, combustion efficiency and indicated thermal efficiency keep constant. However, too wide fuel stratification increases pressure rise rate and CO and NOx emissions in exhaust gas.

Prediction of the Viable Operating Range of DME Heel Engine Using Thermal Stratification Based on Numerical Analysis (온도 성층화를 이용한 DME HCCI 엔진의 운전 영역 확장에 관한 수치해석 연구)

  • Jeong, Dong-Won;Kwon, O-Seok;Back, Young-Soon;Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.344-351
    • /
    • 2009
  • A multi-zone model was used to predict the operating range of homogeneous charge compression ignition (HCCI) engine, the boundaries of the operating range were determined by knock (presented by ring intensity), misfire (presented by sensitivity of indicated mean effective pressure to the initial temperature). A HCCI engine fueled with Di-Methyl Ether (DME) was simulated under different initial temperature and equivalence ratios, and the operating range was well produced by the model. Furthermore, the model was applied to develop the operating range for thermal stratification in the preceding condition of initial temperature and equivalence ratios. The computations were conducted using Senkin application of the CHEMKINII kinetics rate code.

An Investigation of Effects of Fuel Stratification and Cooled EGR on DME HCCI Engine's Operating Ranges by Numerical Analysis (농도성층화와 Cooled EGR이 DME HCCI 엔진의 운전영역에 미치는 영향에 관한 수치해석)

  • Jeong, Dong-Won;Amarbayar, D.;Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • Homogeneous charge compression ignition (HCCI) engines have the potential to provide both diesel-like efficiency and very low emissions of nitrogen oxide (NOx) and particulate matter(PM). However, several technical issues still must be resolved before HCCI can see application. Among these, steep pressure-rise rate which leads to narrow operating range of HCCI engine continues to be a major issue. This work investigates the combination of two methods to mitigate the excessive pressure-rise rates at high power output, namely fuel stratification and Cooled exhaust-gas recirculation (Cooled EGR), after identifying the each effects to pressure-rise rate. When applying the fuel stratification to simulation, total fuelling width of 0.15 at BDC is set as a equivalent ratio difference based on the previous research. In order to simulate the effects of cooled EGR, $CO_2$ mole fraction in pre-mixture is changed ranging from 0 to 30%. DME which has a characteristic of two-stage ignition is used as a fuel.

The Molecular Weight Dependance of Paramagnetic Gd-chelates on T1 and T2 Relaxation Times (상자성 복합체의 분자량에 따른 T1 및 T2 자기이완시간에 관한 연구)

  • Kim In-Sung;Lee Young-Ju;Kim Ju-Hyun;Sujit Dutta;Kim Suk-Kyung;Kim Tae-Jeong;Kang Duk-Sik;Chang Yong-Min
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.61-66
    • /
    • 2006
  • To evaluate the T1, T2 magnetic relaxation properties of water molecule according to molecular weight of paramagnetic complex. 4-aminomethyicyclohexane carboxylic acid (0.63 g, 4 mmol) was mixed with the suspension solution of DMF (15 ml) and DTPA-bis-anhydride (0.71 g, 2 mmol) to synthesize the ligand. The ligand was then mixed with $Gd_2O_3$ (0.18 g, 0.5 mmol) to synthesize Gd-chelate. For the measurement of magnetic relaxivity of paramagnetic compounds, the compounds were diluted to 1 mM and then the relaxation times were measured at 1.57 (64 MHz). Inversion-recovery pulse sequence was employed for T1 relaxation measurement and CPMG (Carr-Purcell-Meiboon-Gill) pulse sequence was employed for T2 relaxation measurement. In case of inversion recovery sequence, total 35 images with different inversion time(T1)s ranging from 50 msec to 1,750 msec. To estimate the relaxation times, the signal intensity of each sample was measured using region of Interest (ROI) and then fitted by non-linear least square method to yield T1, T2 relaxation times and also R1 and R2. Compared to T1=($205.1{\pm}2.57$) msec and T2=($209.4{\pm}4.28$) msec of Omniscan (Gadodiamide), which is commercially available paramagnetic MR agent, T1 and T2 values of new paramagnetic complexes were reduced along with their molecular weight. That is, T1 value was ranged from $(96.35{\pm}2.04)\;to\;(79.38{\pm}1.55)$ msec and T2 value was ranged from $(91.02{\pm}2.08)\;to\;(76.66{\pm}1.84)$ msec. Among new paramagnetic complexes, there is a tendency that the R1 and R2 increase as the molecular weight is increases. As molecular weight of paramagnetic complex increases, T1 and T2 relaxation times reduce and thus the increase of relaxivity (R1 and R2) Is proportional to molecular weight.

  • PDF