• Title/Summary/Keyword: 자기지전류 자료 역산

Search Result 23, Processing Time 0.018 seconds

Inversion Analysis of Magnetotelluric Data Acquired in Geothermal Area of Seokmo Island (석모도 지열지대 자기지전류 탐사 자료의 역산 해석)

  • Lee, Seong-Kon;Park, In-Hwa;Chung, Yong-Hyun;Lee, Tae-Jong
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.654-664
    • /
    • 2011
  • A field campaign of magnetotelluric (MT) and audio-frequency MT (AMT) survey was done at 36 measurement points as a complementary for the previous 44 MT measurements completed during the period of 2005-2006. The purpose of additional MT survey is to investigate the possible fracture system in Seokmo Island, which is conceived to be crucial in accumulation and migration of geothermal hot spring in this area. We have done 2D and 3D inversions of overall MT and AMT data distributed on a grid to interpret subsurface of extended area. The inversion results reveal that at least two major faults are imaged in the inversion results, one of which is in NNE-SWW with steep dip, and another is in E-W direction.

A two-dimensional inversion of MT and AMT data from mid-mountain area of Jeiu island (제주도 중산간 지역 MT 및 AMT 탐사자료의 2차원 역산)

  • Lee, Tae-Jong;Song, Yoon-ho;Uchida,Toshihiro;Park, In-Wha;Lim, Sung-Keun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.21-26
    • /
    • 2005
  • Two-dimensional (2-D) inversion of magnetotelluric (MT) data for two survey lines having south-north direction from Jeiu Island has been carried out. The 2-D models show a thick layer having around 10 ohm-m in the depth of a few hundred meters throughout the survey area, which can be considered as the unconsolidated sedimentary layer. And they also show a conductive anomaly at the central part of each survey lines. But unfortunately by now, we do not have any further information about the anomaly. Comparison of the 2-D inversion model using MT band only and that using both AMT and MT bands said that it is helpful for us to include AMT band as well as MT band in the inversion to interpret not only the shallow part but also the deep structures.

  • PDF

On the Efficient Three-Dimensional Inversion of Static Shifted MT Data (정적효과를 포함한 자기지전류 자료의 효율적인 3차원 역산에 관하여)

  • Jang, Hannuree;Jang, Hangilro;Kim, Hee Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.2
    • /
    • pp.95-103
    • /
    • 2014
  • This paper presents a practical inversion method for recovering a three-dimensional (3D) resistivity model and static shifts simultaneously. Although this method is based on a Gauss-Newton approach that requires a sensitivity matrix, the computer time can be greatly reduced by implementing a simple and effective procedure for updating the sensitivity matrix using the Broyden's algorithm. In this research, we examine the approximate inversion procedure and the weighting factor ${\beta}$ for static shifts through inversion experiments using synthetic MT data. In methods using the full sensitivity matrix constructed only once in the iteration process, a procedure using the full sensitivity in the earlier stage is useful to produce the smallest rms data misfit. The choice of ${\beta}$ is not critical below some threshold value. Synthetic examples demonstrate that the method proposed in this paper is effective in reconstructing a 3D resistivity structure from static-shifted MT data.

A Study on Geoelectrical Structure of Jeju Island Using 3D MT Inversion of 2D Profile Data (2차원 MT 자료의 3차원 역산을 통한 제주도 지전기구조 연구)

  • Choi, Ji-Hyang;Kim, Hee-Joon;Nam, Myung-Jin;Lee, Tae-Jong;Han, Nu-Ree;Lee, Seong-Kon;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.268-274
    • /
    • 2007
  • Traditional two-dimensional (2D) interpretation of magnetotelluric (MT) data utilizes only transverse magnetic (TM)-mode data, because 2D inversion of transverse electric (TE)-mode data results in spurious features when 3D structures exist in the subsurface. The application of a 3D inversion algorithm to a single MT profile can reduce contamination due to off-profile anomalies and help us to incorporate TE-mode data in the interpretation. In this study, we conduct 2D and 3D inversions of MT data observed along two lines in Jeju Island. First, we invert apparent resistivities and phases in the TM and TE modes separately. Then, we perform 2D joint inversion of both TM- and TE-mode data and 3D inversion of both Zxy- and Zyx-mode data corresponding to TE- and TM-mode data in 2D. The resistivity images derived from all four data show that the geoelectrical structure in Jeju Island is a three-layered earth with the resistive-conductive-resistive stratigraphy within a depth of 5 km. The 3D inversion does not produce clear anomalies in the reconstructed profile image, while all of 2D do. This attributed to the possibility that 2D inversion results are distorted by exiting off-profile 3D anomalies in Jeju. With 3D inversion of 2D profile MT data, we can deduce more reliable results that are not seriously distorted by off-profile 3D anomalies.

Use of Audio-Band on the Interpretation of Magnetotelluric Data (MT 탐사자료의 해석에서 AMT 대역 자료의 효용성)

  • Lee, Tae-Jong;Lee, Seong-Kon;Song, Yoon-Ho;Uchida, Toshihiro
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.261-270
    • /
    • 2006
  • Two-dimensional (2-D) inversion of magnetotelluric (MT) data for two survey lines having south-north direction from Jeju Island has been carried out. Broad band MT sounding curves with good quality could be gathered by performing audio-frequency magnetotelluric (AMT) survey during the MT survey and by operating the remote reference in Kyushu Island, Japan. Comparison of the 2-D inversion model using MT band only and that using both AMT and MT bands for the field data as well as for the data from numerical 2-D modeling said that high frequency information from AMT survey can be useful for interpreting not only the shallow part but also the deep structures, especially when the formation is resistive. The 2-D inversion models of field data show a thick layer having around 10 ohm-m in the depth of a few hundred meters throughout the survey area, which can be considered as the unconsolidated sedimentary layer. And they also show a conductive anomaly at the central part of each survey lines. It can be either the effect of the surrounding sea water, or the structures due to ancient volcanic events. But unfortunately by now, we do not have any further information about the anomaly.

Analysis of Static Shift and its Correction in Magnetotelluric Surveys (MT 탐사에서의 정적효과 및 보정법 분석)

  • Hanna Jang;Yoonho Song;Myung Jin Nam
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.129-143
    • /
    • 2024
  • In magnetotelluric (MT) surveys, small inhomogeneities near the surface cause a static shift in which apparent resistivities shift regardless of frequency. As the static shift in MT data leads to errors in subsurface structure interpretation, many studies have been conducted over the past few decades to mitigate or remove the distortions it caused. The most representative method involves removing static shifts from the data before inversion. Conversely, static shifts can be corrected during inversion or included in the inversion process. In addition, other geophysical data can be used to remove static shifts. However, the correction methods are limited to one-dimensional (1D) static responses, and limitations remain in two- or three-dimensional (2D or 3D) interpretation of distorted MT data owing to static shifts. This study provides a foundation for future studies on static shift by analyzing several previously published methods.

A Study on the Resistivity Structure in Central Myanmar Basin using DC Resistivity and Magnetotellurics (전기비저항 탐사와 자기지전류 탐사 자료를 이용한 미얀마 중앙분지 전기비저항 구조 연구)

  • Noh, Myounggun;Lee, Heuisoon;Ahn, Taegyu;Jang, Seonghyung;Hwang, InGul;Lee, Donghoon;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.62-71
    • /
    • 2019
  • We conducted DC resistivity and MT survey to obtain the resistivity structure of the central Myanmar basin. We tried to analyze the underground structure through the resistivity variation of Myanmar by performing representative geophysical survey methods because researches on the electrical resistivity structure are insufficient in Myanmar. The electrical resistivity is expected to be low considering the marine sedimentary rocks composed of shale and sandstone in this area. The DC resistivity and MT survey were carried out using SmartRho of Geolux Co., Ltd. and MTU-5A of Phoenix geophysics Ltd., respectively, to visualize the electrical resistivity structure of study area. DC resistivity and MT survey showed an electrical resistivity less than dozens of ohm-m within the depth of 100 m. In particular, MT survey data were almost similar to TM and TE modes in the frequency range above 1 Hz. The two-dimensional inversion of MT data showed a subsurface structure with low resistivity below 150 ohm-m divided into east-west direction. We confirmed that the inversions of DC resisitivity and MT data along an overlapped survey line represented similar results. In the future, considering the high electrical conductivity, it would be effective to perform DC resistivity and MT survey simultaneously to study the electrical resistivity structure of the central Myanmar basin.

3-D Geological Structure Interpretation by the Integrated Analysis of Magnetotelluric and Gravity Model at Hwasan Caldera (자기지전류 및 중력 모델의 복합해석을 통한 화산칼데라 지역의 3차원 지질구조 해석)

  • Park, Gye-Soon;Lee, Chun-Ki;Yang, Jun-Mo;Lee, Heui-Soon;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.548-559
    • /
    • 2011
  • 3-D Multi-geophysical surveys were carried out around the Hwasan caldera at the Euisung Sub-basin. To overcome the limitations of resolutions in previous studies, dense gravity data and magnetotelluric (MT) data were obtained and analyzed. In this study, the independent inversion models from gravity and MT data were integrated using correlation and classification approaches for 3-D imaging of the geologic structures. A Structure Index (SI) method was proposed and applied to the integration and classification analyses. This method consists of Type Angle (TA) and Type Intensity (TI) values, which are estimated by the spatial correlation and abnormality of the physical properties. The SI method allowed the classification analysis to be effectively performed. Major findings are as follows: 1) pyroclastic rocks around the central area of the Hwasan caldera with lower density and resistivity than those of neighboring regions extended to a depth of around 1 km, 2) intrusive igneous rocks with high resistivity and density were imaged around the ring fault boundary, and 3) a basement structure with low resistivity and high density, at a depth of 3-5 km, was inferred by the SI analysis.

Two-dimensional Inversion of Sea-effect-corrected Magnetotelluric (MT) Data in Jeju Island (해양효과가 보정된 제주도 자기지전류 탐사 자료의 2차원 역산)

  • Yang, Jun-Mo;Lee, Heui-Soon;Lee, Choon-Ki;Park, Gye-Soon
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.602-612
    • /
    • 2011
  • Jeju Island, a volcanic island located in South Korea, has been one of the main targets of geophysical and/or geological studies because of its tectonic importance related to the volcanism and tectonic link to the southern part of the Korean Peninsula. Recently, as a number of broad-band magnetotelluric (MT) measurements were made, we have examined the deep part of the island. In such an insular setting, it is not easy to properly recover the deep structures such as the lower crust and the upper crust using MT data, because their low-frequency components are strongly affected by the surrounding sea of the island. In this study, we apply the sea-effect correction to the existing MT data collected at a total of 102 sites in Jeju Island. The sea-effect correction makes remarkable changes in the observed MT data at frequencies below 1 Hz, clearly indicating the existence of a conductive lower crust. The 2-D inversion results for both Jeju Southern Line (JSL) and Jeju Northern Line (JNL) show that the transition zone separating the resistive upper crust and conductive lower crust exists at a depth of 20 km on average.

An Application of Minimum Support Stabilizer as a Model Constraint in Magnetotelluric 2D Inversion (최소모델영역 연산자를 모델제한조건으로 적용한 2차원 MT 역산)

  • Lee, Seong-Kon
    • Journal of the Korean earth science society
    • /
    • v.30 no.7
    • /
    • pp.834-844
    • /
    • 2009
  • Two-dimensional magnetotelluric (MT) inversion algorithm using minimum support (MS) stabilizer functional was implemented in this study to enhance the contrast of inverted images. For this implementation, this study derived a formula in discrete form for creeping model updates in the least-squares linearized inversion. A spatially varying regularization parameter determination algorithm, which is known as ACB (Active Constraint Balancing), was also adopted to stabilize the inversion process when using MS stabilizer as a model constraint. Inversion experiments for a simple isolated body model show well the feature of MS stabilizer in concentrating the anomalous body compared with the second-order derivative model constraint. This study also compared MS stabilizer and the second-order derivative model constraints for a model having multiple anomalous bodies to show the applicability of the algorithm into field data.