• 제목/요약/키워드: 자기조직화 방법

검색결과 132건 처리시간 0.027초

자기 조직화 신경망을 이용한 위성영상 분류 (Classification of Satellite image by Self-Organizing Maps)

  • 진영근
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.350-352
    • /
    • 2000
  • 위성이 보내어오는 영상의 량은 인간이 일일이 실시간으로 검색할 수 없을 정도의 방대한 양이다. 그러므로 위성이 보내어오는 영상을 자동적으로 빠른 시간내에 분석하기 위하여 원패스로 성질이 유사한 영역을 묶어서 분류하는 알고리즘이 필요하다. 본 연구에서는 자기조직화 신경망(SOM)을 인공위성 영상을 원패스에 분할할 수 있도록 학습방법을 개선하였으며 개선된 SOM 알고리즘이 같은 원패스 알고리즘인 온라인 K-means과 비교하여 유효함을 알 수 있었다.

  • PDF

자기 조직화 맵 기반 유사 검색 시스템 (SOM-Based $R^{*}-Tree$ for Similarity Retrieval)

  • 오창윤;임동주;오군석;배상현
    • 정보처리학회논문지D
    • /
    • 제8D권5호
    • /
    • pp.507-512
    • /
    • 2001
  • 특징 기반 유사성은 멀티미디어 데이터베이스 시스템에서 중요한 연구 쟁점이 되고 있다. 멀티미디어 데이터의 특징이 멀티미디어 객체들을 구별하는데 유용하다지만 특징 벡터의 차원의 수가 증가함에 따라 종래의 다차원 데이터 구조의 성능은 떨어지는 경향이 있다. $R^{*}-Tree$는 R-Tree의 가장 성공적인 병형으로 본 논문에서 고차원 특징 벡터를 위한 새로운 인덱싱 방법으로서 자기 조직화 맵 기반 $R^{*}-Tree$를 제안한다. 자기 조직화 맵 기잔 $R^{*}-Tree$는 고차원 데이터를 좀더 스칼라화해서 탐색할 수 있도록 SOM과 $R^{*}-Tree$를 결합하여 구축한 인덱싱 기법이다. 자기 조직 맵은 고차원 특징 벡터들로부터 2차원 공간으로의 맵핑을 제공한다. 그러나 맵을 위상 특징 맵이라 하고 인접 노느에서 서로 유사한 특징 벡터들을 모아서 입력데이터의 특징 공간들 속에 유사성을 보존하는데 위상 특징 맵의 각 노드는 코드북 벡터를 가지고 있다. 실험적으로 4만개의 이미지로부터 추출된 색깔 특징 벡터들을 이용하여 자기 조직화 맵 기반 $R^{*}-Tree$의 검색시간 비용과 자기 조직화 맵과 $R^{*}-Tree$의 검색 시간 비용을 비교한다. 그 결과 $R^{*}-Tree$를 구축하는데 필요한 노드 수와 검색 시간 비용이 감소됨으로써 자기 조직화 맵 기반 $R^{*}-Tree$는 자기 조직화 맵과 $R^{*}-Tree$보다 훨씬 우수한 성능을 나타냄이 입증되었다.

  • PDF

복잡계 네트워크를 이용한 강화 학습에서의 환경 표현 (World Representation Using Complex Network for Reinforcement Learning)

  • 이승준;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.622-624
    • /
    • 2004
  • 강화 학습(Reinforcement Learning)을 실제 문제에 적용하는 데 있어 가장 큰 문제는 차원성의 저주(Curse of dimensionality)였다 문제가 커짐에 따라 목적을 이루기 위해서 더 많은 단계의 판단이 필요하고 이에 따라 문제의 해결이 지수적으로 어려워지게 된다. 이를 해결하기 위해 문제를 여러 단계로 나누어 단계별로 학습하는 계층적 강화 학습(Hierarchical Reinforcement Learning)이 제시된 바 있다 하지만 대부분의 계층적 강화 학습 방법들은 사전에 문제의 구조를 아는 것을 전제로 하며 큰 사이즈의 문제를 간단히 표현할 방법을 제시하지 않는다. 따라서 이들 방법들도 실제적인 문제에 바로 적용하기에는 적합하지 않다. 최근 이루어진 복잡계 네트워크(Complex Network)에 대한 연구에 착안하여 본 논문은 자기조직화하는 생장 네트워크(Self organizing growing network)를 기반으로 한 간단한 환경 표현 모델을 사용하는 강화 학습 알고리즘을 제안한다 네트웍은 복잡계 네트웍이 갖는 성질들을 유지하도록 자기 조직화되고, 노드들 간의 거리는 작은 세상 성질(Small World Property)에 따라 전체 네트웍의 큰 사이즈에 비해 짧게 유지된다. 즉 판단해야할 단계의 수가 적게 유지되기 때문에 이 방법으로 차원성의 저주를 피할 수 있다.

  • PDF

자기 조직화 기법을 활용한 컬러 영상 배경 영역 추출 (Background Segmentation in Color Image Using Self-Organizing Feature Selection)

  • 신현경
    • 정보처리학회논문지B
    • /
    • 제15B권5호
    • /
    • pp.407-412
    • /
    • 2008
  • 잡음이 심한 배경을 가진 영상 내부의 영역 분할 처리 과정은 해결하기 매우 어려운 문제로 인식되어 왔다. 그에 따라 이 문제를 해결하기 위한 기초적 방법론에 관한 연구 및 주어진 문제에 따라 실제적 적용을 위한 다양한 노력이 있어왔다. 본 논문에서는 영상 분할을 위한 새로운 접근법을 제시하는 것을 목적으로 하였다. 새로운 방법론으로서 기존의 관심 객체 분할의 반대인 배경 영역 분할이라는 새로운 관점을 연구의 중심으로 하였다. 기반 이론으로는 승자 독식 원리의 자기 학습 이론 알고리즘에서 특징 선택을 위한 자기 조직화를 분석하고 이를 문제 해결에 적용하였다. 실제적 영상 데이터를 통한 실험을 통해 배경 영역 분할을 적용한 영상 분할은 효과적으로 수행될 수 있음을 실험 결과로 제시해 보였다.

BCI(Brain-Computer Interface)에 적용 가능한 상호작용함수 기반 자율적 기계학습 (Unsupervised Machine Learning based on Neighborhood Interaction Function for BCI(Brain-Computer Interface))

  • 김귀정;한정수
    • 디지털융복합연구
    • /
    • 제13권8호
    • /
    • pp.289-294
    • /
    • 2015
  • 본 연구는 비교사학습의 대표적인 방법 중 하나인 코호넨의 자기조직화 방법을 기반으로 BCI(Brain-Computer Interface)에 적용 가능한 자율적 기계학습방법을 제안한다. 이를 위해 상호작용 함수를 이용한 학습영역조정방법과 자율적 기계학습규칙을 제안하였다. 학습영역조정과 기계학습은 코호넨의 자기조직화 방법을 기반으로 한 상호작용 함수에 의한 측면제어효과를 이용하였다. 승자 뉴런을 결정하고 난 후 학습 규칙에 따라 뉴런의 연결강도를 조정하고 학습 횟수가 증가함에 따라 학습영역이 점차 감소하여 출력층 뉴런 가중치들의 입력을 향한 유동을 완화시켜 네트워크가 평형 상태(equilibrium state)에 도달하여 학습을 마칠 수 있는 자율적 기계학습을 제안하였다.

효모 마이크로어레이 유전자발현 데이터에 대한 군집화 비교 (Comparison of clustering with yeast microarray gene expression data)

  • 이경아;김재희
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권4호
    • /
    • pp.741-753
    • /
    • 2011
  • 마이크로어레이 유전자 발현데이터인 효모데이터를 이용하여 군집분석을 실시하였다. 모형기반 군집방법, K-평균법, 중앙값 중심분포 (PAM), 자기 조직화 지도 (SOM), 계층적 Ward 군집방법을 이용하여 군집화를 실시하고, 연결성 측도 (connectivity), Dunn지수, 실루엣 측도 (silhouette)를 이용하여 각 군집방법에 대한 유효성을 측정하고 군집분석 결과를 비교하고자한다.

주성분 자기조직화 지도 PC-SOM (Principal Components Self-Organizing Map PC-SOM)

  • 허명회
    • 응용통계연구
    • /
    • 제16권2호
    • /
    • pp.321-333
    • /
    • 2003
  • 자기조직화 지도(SOM)은 T. 코호넨의 주도하에 개발된 비지도 학습 신경망 모형이다. 그 동안 패턴인식과 문서검색 분야에 주로 응용되어 왔기 때문에 통계학 분야에서는 덜 알려졌으나, 최근 K-평균 군집화에 대한 대안적 데이터 마이닝 기법으로 활용되기 시작하였다. 본 연구에서는 SOM의 한 버전인 PC-SOM(주성분 자기조직화 지도)을 제안하고 활용 예를 제시하고자 한다. PC-SOM은 1차원적 SOM 알고리즘을 반복 수행하여 2차원, 3차원 등의 SOM을 얻는 방법이기 때문에 기존 SOM과는 달리 사전 Map의 크기를 확정할 필요가 없다. 또한, 기존 SOM에 비하여 향상된 시각화를 가능하게 한다.

LTE-Advanced 융합 망에서 서비스 자기-조직화 방법 (Service Self-Organization Method in LTE-Advanced Heterogeneous Networks)

  • 이기성;이종찬
    • 한국산학기술학회논문지
    • /
    • 제16권9호
    • /
    • pp.6260-6268
    • /
    • 2015
  • 상이한 망이 공존하는 LTE-Advanced에서 기존 음성 서비스에 적용된 절차적이고 정적인 제어방식으로는 서비스 연속성을 효과적으로 지원하는 것은 현실적으로 어렵다고 여겨진다. 본 논문에서는 SON를 기반으로 서비스 연속성을 효과적으로 지원하기 위한 서비스 자기-조직화를 제시하고자 한다. SON을 통하여 가입자 단말기는 자신의 현재 상태 및 주변 기지국 정보를 수집하고, 기지국은 내부 및 인접한 기지국 모니터링으로 수집된 정보를 통하여, 관련 제어 데이터를 공유하고 이를 종합 분석하여 서비스 연속성을 자체적으로 조절/제어하는 방법을 제안한다. 서비스 자기-조직화는 단말기 및 기지국의 상태 정보 변화에 따라 관련 기능(여기서 기능은 ISHO, 셀 선정, 자원 할당, 부하 제어, QoS 매핑 등을 의미함)의 설정을 동적으로 제어하고, 각각의 기능들이 변화에 적응하여 조정되고 재구성하는 과정을 주고받으면서 각 기능들이 상호 작용하게 된다. 이러한 동작들이 서비스 자기-조직화를 통하여 서비스 연속성을 만족시키는 방향으로 이루어진다. 자원 이용률과 outage 확률을 성능척도로 하여 수행된 시뮬레이션 결과에 의하면 제안된 방안은 기존 방안에 비하여 더 우수한 성능을 가짐이 확인된다.

2009년 여자프로골프선수 프로파일을 이용한 군집방법비교 (A Comparison of cluster analysis based on profile of LPGA player profile in 2009)

  • 민대기
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권3호
    • /
    • pp.471-480
    • /
    • 2010
  • 군집방법은 탐색적 통계기법에서 매우 유용한 방법이나 최종 의사결정을 지지할 검정 통계량이 없는 것이 단점이다. 자료구조에서 살펴보면 군의 성격을 파악하는 변수가 있느냐 없느냐가 군집분석과 판별분석의 차이이다. 군집분석이 가장 이상적으로 이루어졌다면 그 프로파일의 분석결과가 판별분석과 같을 것이다. 이 점에 근거하여 비계층 분석의 대표적인 K-평균법 방법과 자기 조직화지도 군집분석의 유효성을 2009년 여자프로골프 선수들의 프로파일 분석을 통하여 비교 연구하였다.

자기조직화지도 클러스터링을 이용한 종단자료의 탐색적 분석방법론 (An Exploratory Methodology for Longitudinal Data Analysis Using SOM Clustering)

  • 조영빈
    • 융합정보논문지
    • /
    • 제12권5호
    • /
    • pp.100-106
    • /
    • 2022
  • 종단연구는 동일 대상에 대하여 반복적으로 측정한 종단자료를 기반으로 하는 연구방법을 말한다. 대부분의 종단분석 방법은 예측이나 추론에 적합하고, 탐색적 목적으로 사용하기에는 적합하지 않은 경우가 많다. 본 연구에서는 종단자료를 분석하는 탐색적 방법을 제시한다. 이 방법은 자기조직화지도기법을 사용하여 종단자료를 군집화 하여 최선의 군집 수를 정한 후 종단궤적을 찾는 방법이다. 제안한 방법론은 고용정보원의 종단자료에 적용되었으며, 총 2,610개의 샘플에 대하여 분석을 하였다. 방법론을 적용한 결과 패널 별로 시계열적으로 군집 화되는 결과를 얻었다. 이는 종단자료를 사전에 클러스터링하고 다층 종단분석을 하는 것이 더욱 효과적이라는 사실을 나타낸다.