• Title/Summary/Keyword: 자기조직화

Search Result 291, Processing Time 0.028 seconds

Pattern Analysis of Apartment Price Using Self-Organization Map (자기조직화지도를 통한 아파트 가격의 패턴 분석)

  • Lee, Jiyoung;Ryu, Jae Pil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.27-33
    • /
    • 2021
  • With increasing interest in key areas of the 4th industrial revolution such as artificial intelligence, deep learning and big data, scientific approaches have developed in order to overcome the limitations of traditional decision-making methodologies. These scientific techniques are mainly used to predict the direction of financial products. In this study, the factors of apartment prices, which are of high social interest, were analyzed through SOM. For this analysis, we extracted the real prices of the apartments and selected a total of 16 input variables that would affect these prices. The data period was set from 1986 to 2021. As a result of examining the characteristics of the variables during the rising and faltering periods of the apartment prices, it was found that the statistical tendencies of the input variables of the rising and the faltering periods were clearly distinguishable. I hope this study will help us analyze the status of the real estate market and study future predictions through image learning.

Analysis of spatial mixing characteristics of water quality at the confluence using artificial intelligence (인공지능을 활용한 합류부에서 수질의 공간혼합 특성 분석)

  • Lee, Seo Gyeong;Kim, Dongsu;Kim, Kyungdong;Kim, Young Do;Lyu, Siwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.482-482
    • /
    • 2022
  • 하천의 합류부에서는 수질이 다른 유체가 혼합하여 합류 전과 다른 특성을 보인다. 하천의 합류부에서 수질을 효율적으로 관리하기 위해서는 수질의 공간적인 혼합 특성을 규명하는 것이 중요하다. 합류부에서 수질의 공간적인 혼합 특성을 분석하기 위해 본 연구에서는 토폴로지 데이터 분석(topological data analysis, TDA), 자기 조직화 지도(Self-Organizing Map, SOM), k-평균 알고리즘(K-means clustering algorithm) 세 가지 기법을 이용하였다. 세 가지 기법을 비교하여 어떤 알고리즘이 합류부의 수질 변화 특성을 더 뚜렷하게 나타내는지 분석하였다. 수질 변화 비교 인자들은 pH, chlorophyll, DO, Turbidity 등이 있고, 수질 인자들은 YSI를 활용해 측정하였다. 자료의 측정 지역은 낙동강과 황강이 합류하는 지역이며, 보트에 YSI 장비를 부착하고 횡단하여 측정하였다. 측정한 데이터를 R 프로그램을 통해 세 가지 기법을 적용시켜 수질 변화 비교를 분석한다. 토폴로지 데이터 분석(topological data analysis, TDA)은 거대하고 복잡한 데이터로부터 유의미한 정보를 추출하는 데 사용하고, 자기조직화지도(Self-Organizing Map, SOM) 기법은 차원 축소와 군집화를 동시에 수행한다. k-평균 알고리즘(K-means clustering algorithm) 기법은 주어진 데이터를 k개의 클러스터로 묶는 머신러닝 비지도학습에 속하는 알고리즘이다. 세 가지 방법들의 주목적은 클러스터링이다. 클러스터 분석(Cluster analysis)이란 주어진 데이터들의 특성을 고려해 동일한 성격을 가진 여러 개의 그룹으로 대상을 분류하는 데이터 마이닝의 한 방법이다. 군집화 방법들인 TDA, SOM, K-means를 이용해 합류 지역의 수질 특성들을 클러스터링하여 수질 패턴들을 분석해 하천 수질 오염을 방지할 수 있을 것이다. 본 연구에서는 토폴로지 데이터 분석(topological data analysis, TDA), 자기조직화지도(Self-Organizing Map, SOM), k-평균 알고리즘(K-means clustering algorithm) 세 가지 기법을 이용하여 합류부에서의 수질 특성을 비교하며 어떤 기법이 합류의 특성을 더욱 뚜렷하게 나타내는지 규명했다. 합류의 특성을 군집화 방법을 이용해 알게 된다면, 합류부의 수질 변화 패턴을 다른 합류 지역에서도 적용할 수 있을 것으로 기대된다.

  • PDF

Pattern Classification and Analysis of Rainfall-Runoff and TOC Variation by the application of Self Organizing Map (자기조직화방법을 적용한 강우 유출과 강우-TOC변동에 관한 패턴 분류 및 분석)

  • Park, Sung-Chun;Kim, Jong-Rok;Jin, Young-Hoon;Jeong, Cheon-Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2061-2065
    • /
    • 2008
  • 본 연구는 강우-유출 및 TOC의 패턴 분류를 위하여 광주 광산 강우관측소의 강우량자료와 나주지점의 유출량 그리고 기존의 BOD 및 COD 수질농도 측정값에 비하여 적은 오차요인과 빠른 시간에 결과 값을 얻을 수 있으며 유출량과 난분해성 물질에 대한 해석이 가능하고 재현성이 탁월한 TOC자료를 사용하였다. SOM을 적용하기 위해 먼저 Map의 크기는 Garcia가 제시한 $M=5{\sqrt{N}}$을 이용하여 결정한다. 이러한 비선형적인 다변량 자료를 분석하기 위해서 Map에 의해 구분된 자료 위치를 추출하여 원자료를 재구축하고 이를 통해 원자료를 패턴별로 분류 할 수 있었다. 이러한 패턴별 분류를 통해 유출량에 따른 TOC자료를 2차원의 Map 상에 시각적으로 가시화하여 비선형적인 경향이 강한자료의 분포적 양상을 이해하는데 큰 도움이 되며, 향후 이를 통해 예측을 위한 모형화 과정에도 크게 도움을 줄 것으로 기대된다. 또한, 강우자료 또는 유출량 자료만을 이용한 단일변량의 패턴분류를 위해 SOM의 적용이 가능할 것으로 판단되며, 이는 각 변량의 본질적인 특성을 파악할 수 있을 것으로 기대된다.

  • PDF

An Empirical Study on the Measurement of Clustering and Trend Analysis among the Asian Container Ports Using Self Organizing Maps based on Neural Network and Tier Models (자기조직화지도 신경망 모형과 Tier 모형을 이용한 아시아컨테이너항만의 클러스터링측정 및 추세분석에 관한 실증적 연구)

  • Park, Rokyung
    • Journal of Korea Port Economic Association
    • /
    • v.30 no.1
    • /
    • pp.23-55
    • /
    • 2014
  • The purpose of this paper is to show the clustering trend and to choose the clustering ports for 3 Korean ports(Busan, Incheon and Gwangyang Ports) by using the self organizing maps based on neural network(SOM) and Tier models for 38 Asian ports during 11 years(2001-2011) with 4 input variables(birth length, depth, total area, and number of crane) and 1 output variable(container TEU). The main empirical results of this paper are as follows. First, clustering results by using SOM show that 3 Korean ports[Busan(26.5%), Incheon(13.05%), and Gwangyang(22.95%) each]can increase the efficiency. Second, according to Tier model, Busan(Hongkong, Sanghai, Manila, and Singapore), Incheon(Aden, Ningbo, Dabao, and Bangkog), and Gwangyang(Aden, Ningbo, Bangkog, Hipa, Dubai, and Guangzhou) should be clustered with those ports in parentheses. Third, when both SOM and Tier models are mixed, (1) efficiency improvement of Busan Port is greater than those of Incheon and Gwangyang ports. (2) Incheon port has shown the slow improvement during 2001-2007, but after 2008, improvement speed was high. (3) improvement level of Gwangyang port was high during 2001-2003, but after 2004, improvement level was constantly decreased. The policy implication of this paper is that Korean port policy planner should introduce the SOM, and Tier models with the mixed two models when clustering among the Asian ports for enhancing the efficiency of inputs and outputs.

Dense-Depth Map Estimation with LiDAR Depth Map and Optical Images based on Self-Organizing Map (라이다 깊이 맵과 이미지를 사용한 자기 조직화 지도 기반의 고밀도 깊이 맵 생성 방법)

  • Choi, Hansol;Lee, Jongseok;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.283-295
    • /
    • 2021
  • This paper proposes a method for generating dense depth map using information of color images and depth map generated based on lidar based on self-organizing map. The proposed depth map upsampling method consists of an initial depth prediction step for an area that has not been acquired from LiDAR and an initial depth filtering step. In the initial depth prediction step, stereo matching is performed on two color images to predict an initial depth value. In the depth map filtering step, in order to reduce the error of the predicted initial depth value, a self-organizing map technique is performed on the predicted depth pixel by using the measured depth pixel around the predicted depth pixel. In the process of self-organization map, a weight is determined according to a difference between a distance between a predicted depth pixel and an measured depth pixel and a color value corresponding to each pixel. In this paper, we compared the proposed method with the bilateral filter and k-nearest neighbor widely used as a depth map upsampling method for performance comparison. Compared to the bilateral filter and the k-nearest neighbor, the proposed method reduced by about 6.4% and 8.6% in terms of MAE, and about 10.8% and 14.3% in terms of RMSE.

Creation and labeling of multiple phonotopic maps using a hierarchical self-organizing classifier (계층적 자기조직화 분류기를 이용한 다수 음성자판의 생성과 레이블링)

  • Chung, Dam;Lee, Kee-Cheol;Byun, Young-Tai
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.600-611
    • /
    • 1996
  • Recently, neural network-based speech recognition has been studied to utilize the adaptivity and learnability of neural network models. However, conventional neural network models have difficulty in the co-articulation processing and the boundary detection of similar phonmes of the Korean speech. Also, in case of using one phonotopic map, learning speed may dramatically increase and inaccuracies may be caused because homogeneous learning and recognition method should be applied for heterogenous data. Hence, in this paper, a neural net typewriter has been designed using a hierarchical self-organizing classifier(HSOC), and related algorithms are presented. This HSOC, during its learing stage, distributed phoneme data on hierarchically structured multiple phonotopic maps, using Kohonen's self-organizing feature maps(SOFM). Presented and experimented in this paper were the algorithms for deciding the number of maps, map sizes, the selection of phonemes and their placement per map, an approapriate learning and preprocessing method per map. If maps are divided according to a priorlinguistic knowledge, we would have difficulty in acquiring linguistic knowledge and how to alpply it(e.g., processing extended phonemes). Contrarily, our HSOC has an advantage that multiple phonotopic maps suitable for given input data are self-organizable. The resulting three korean phonotopic maps are optimally labelled and have their own optimal preprocessing schemes, and also confirm to the conventional linguistic knowledge.

  • PDF

Exploring Multidimensional Public Health Data Using Self Organizing Map and GIS (자기조직화지도와 GIS를 이용한 다차원 공중보건자료의 탐구적 분석)

  • Sohn, Chul
    • Spatial Information Research
    • /
    • v.20 no.6
    • /
    • pp.23-32
    • /
    • 2012
  • This study applied an exploratory analysis based on Self Organizing Map and GIS to cause specific age-standardized regional death rates data related to ten types of male cancers to find meaning patterns in the data. Then the patterns revealed from the exploratory analysis was evaluated to investigate possible relationship between these patterns and regional socio-economic status represented by regional educational attainment levels of head of household. The results from this analysis show that SI-GUN-GUs in Korea can be clustered to eighteen unique clusters in the stand point of male cancer death rates and these clusters are also spatially clustered. Also, the results reveal that regions with higher socio-economic status show lower level of the death rates compared with the regions with lower socio-economic status. However, for some cancer types, the regions with higher socio-economic status show relatively higher death rates. These patterns imply that the prevention, detection, and treatment of male cancers might be strongly affected by regional factors such as socio-economic status, environmental factors, and cultures and norms in Korea. Especially, one of the eighteen clusters, which includes Gangnam-Gu and Seocho-Gu, shows lower death rates in many of male cancer types. This implies that socio-economic status may be one of the most influential factors for regional cancer control.

Forecasting Vacant Technology of Patent Analysis System using Self Organizing Map and Matrix Analysis (자기조직화 지도와 매트릭스분석을 이용한 특허분석시스템의 공백기술 예측)

  • Jun, Sung-Hae;Park, Sang-Sung;Shin, Young-Geun;Jang, Dong-Sik;Chung, Ho-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.462-480
    • /
    • 2010
  • Patent analysis is the extracting knowledge which is needed for the company's research and development strategy through accumulated worldwide patent database. In order to set the future direction of corresponding technology which is scheduled to be developed, the technology trends and deployment processes are identified by analyzing results of present patent applications. The patent analysis provides the required results for analyzing present patent applications. In this paper, we will carry out technology classification for related patent analysis methods and systems. Moreover we will investigate and analyze related domestic patents, U.S. patents and IEEE papers. Due to the characteristics of technology sector, not only patents are applied but also research papers are released actively about patent analysis system. We will analyze patents according to the technology classification by using the final searching results which come from the selected search words in this study. To find necessary niche technology which is needed for patent analysis system, matrix analysis was performed to all of valid patents and papers. Identifying the technology development trends of registered patent analysis systems, and presenting the future direction of technology development which is related to patent analysis system. To figure out the technology which is developed relatively weak based on domestic patents, U.S patent and research papers by analyzing the valid patents and papers with statistical test and self-organizing map quantitatively. Then, presenting the necessity of this technology development.

Research of Emerging Process on Scientific Creative Products: Case Study of Self-Organization Process on Emerging of objective knowledge from Subjective Experience of Scientists (과학 분야 창의적 산물 발현과정 연구: 과학자의 주관적 경험이 객관적 지식으로 발현하는 자기조직화 과정의 사례 분석)

  • Kang, Jungha;Cho, Sunhee;Kim, Mijin
    • Journal of Gifted/Talented Education
    • /
    • v.24 no.1
    • /
    • pp.113-147
    • /
    • 2014
  • This study is a case study of the process of emerging for creative products to lead world science and technology. The aim of the study is to understand the emerging process of scientific creative products, and is to provide the direction of gifted education that discovers and trains globally competitive science talents through this. To discuss the emerging process of creative products, this study has academically discussed the creativity of the complexity of dealing with theory of evolution, the real life settings, and self-organization of experience etc., and has methodologically adopted the qualitative research method through a case study to look at the structures and processes. Data collection has been formed through a discussion with 12 Korean scientists who have created selected creative products, greatly contributed for the world science and technology(12 areas). The analysis has been carried out by the latter part positivist methods. As a result, the emerging process of creative products in the field of science and technology were separated into four steps: (1)the foundation stage of knowledge, (2)the exploration stage of knowledge, (3)the construction stage of knowledge, and (4)the emerging stage of knowledge. Each stage has been revealed growing up through the macro-system and the self-organization of each micro-systems.

Estimation of Inundation Area by Linking of Rainfall-Duration-Flooding Quantity Relationship Curve with Self-Organizing Map (강우량-지속시간-침수량 관계곡선과 자기조직화 지도의 연계를 통한 범람범위 추정)

  • Kim, Hyun Il;Keum, Ho Jun;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.839-850
    • /
    • 2018
  • The flood damage in urban areas due to torrential rain is increasing with urbanization. For this reason, accurate and rapid flooding forecasting and expected inundation maps are needed. Predicting the extent of flooding for certain rainfalls is a very important issue in preparing flood in advance. Recently, government agencies are trying to provide expected inundation maps to the public. However, there is a lack of quantifying the extent of inundation caused by a particular rainfall scenario and the real-time prediction method for flood extent within a short time. Therefore the real-time prediction of flood extent is needed based on rainfall-runoff-inundation analysis. One/two dimensional model are continued to analyize drainage network, manhole overflow and inundation propagation by rainfall condition. By applying the various rainfall scenarios considering rainfall duration/distribution and return periods, the inundation volume and depth can be estimated and stored on a database. The Rainfall-Duration-Flooding Quantity (RDF) relationship curve based on the hydraulic analysis results and the Self-Organizing Map (SOM) that conducts unsupervised learning are applied to predict flooded area with particular rainfall condition. The validity of the proposed methodology was examined by comparing the results of the expected flood map with the 2-dimensional hydraulic model. Based on the result of the study, it is judged that this methodology will be useful to provide an unknown flood map according to medium-sized rainfall or frequency scenario. Furthermore, it will be used as a fundamental data for flood forecast by establishing the RDF curve which the relationship of rainfall-outflow-flood is considered and the database of expected inundation maps.