• Title/Summary/Keyword: 자기조직화

Search Result 291, Processing Time 0.033 seconds

Outlier Data Clustering using Factor Score (인자 점수를 이용한 이상치 데이터의 군집화)

  • 전성해;임민택;오경환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.77-80
    • /
    • 2002
  • 이상치를 포함한 학습 데이터의 군집화 전략은 일반적으로 이상치를 포함하여 학습하거나, 이상치를 제거하는 두 가지 선택이 가능하다. 이상치를 제거하지 않고 학습에 반영시켜야 할 경우 한 개 또는 소수의 이상치가 독자적인 군집을 형성하거나 객관적인 군집화를 방해하는 문제가 발생할 수 있다. 이 때 주어진 학습 데이터의 군집 결과가 이상치의 영향으로부터 벗어나기 위해 원래의 학습 데이터에 대한 변환 작업을 거친 후 군집화를 수행할 수 있다. 이러한 변환 방법으로서 본 논문에서는 차원 축소의 기법으로 알려진 인자 분석의 점수를 사용하였다. 인자 점수로 변환된 학습 데이터에 대해 계층적 군집화, K-means 그리고 자기조직화 지도 등과 같은 군집화 알고리즘을 적용하면 이상치가 자신만의 군집을 별도로 형성하지 않고 다른 학습 데이터의 군집에 소속되면서 이상회의 영향으로부터 벗어남을 실험을 통하여 확인하였다.

  • PDF

Development of the Revised Self-Organizing Neural Network for Robot Manipulator Control (로봇 메니퓰레이터 제어를 위한 개조된 자기조직화 신경망 개발)

  • Koo, Tae-Hoon;Rhee, Jong-Tae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.3
    • /
    • pp.382-392
    • /
    • 1999
  • Industrial robots have increased in both the number and applications in today's material handling systems. However, traditional approaches to robot controling have had limited success in complicated environment, especially for real time applications. One of the main reasons for this is that most traditional methods use a set of kinematic equations to figure out the physical environment of the robot. In this paper, a neural network model to solve robot manipulator's inverse kinematics problem is suggested. It is composed of two Self-Organizing Feature Maps by which the workspace of robot environment and the joint space of robot manipulator is inter-linked to enable the learning of the inverse kinematic relationship between workspace and joint space. The proposed model has been simulated with two robot manipulators, one, consisting of 2 links in 2-dimensional workspace and the other, consisting of 3 links in 2-dimensional workspace, and the performance has been tested by accuracy of the manipulator's positioning and the response time.

  • PDF

A Clustering Algorithm Using the Ordered Weight of Self-Organizing Feature Maps (자기조직화 신경망의 정렬된 연결강도를 이용한 클러스터링 알고리즘)

  • Lee Jong-Sup;Kang Maing-Kyu
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.3
    • /
    • pp.41-51
    • /
    • 2006
  • Clustering is to group similar objects into clusters. Until now there are a lot of approaches using Self-Organizing feature Maps (SOFMS) But they have problems with a small output-layer nodes and initial weight. For example, one of them is a one-dimension map of c output-layer nodes, if they want to make c clusters. This approach has problems to classify elaboratively. This Paper suggests one-dimensional output-layer nodes in SOFMs. The number of output-layer nodes is more than those of clusters intended to find and the order of output-layer nodes is ascending in the sum of the output-layer node's weight. We un find input data in SOFMs output node and classify input data in output nodes using Euclidean distance. The proposed algorithm was tested on well-known IRIS data and TSPLIB. The results of this computational study demonstrate the superiority of the proposed algorithm.

LOS-based Local Path Planning for Self organization of Unicycle Swarm Robots (유니사이클 스웜 로봇의 자기조직화를 위한 LOS 기반의 국소 경로 계획)

  • Jung, Hah-Min;Kim, Dong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1881_1882
    • /
    • 2009
  • Simple quadratic potential functions for unicycle robot path planning are presented, where proposed algorithm for path planning has the different environment for each robot based on LOS(Line Of Sight) between a target and an obstacle, unlike a conventional path planning. In doing so, the proposed algorithm assumes that each swarm robot equips its own vision instead of a ceiling camera. In particular, this paper presents that each robot follows its different local leader. As a result proposed algorithm reduces local minimum problems by the help of each local leader.

  • PDF

Obstacle avoidance control based on self-organization for swarm mobile robot (다개체 모바일 로봇의 자기조직화를 통한 장애물 회피 제어)

  • Han, Byung-Jo;Park, Gi-Kwang;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1638_1639
    • /
    • 2009
  • This paper propose a mobile robot for the obstacle avoidance control. The proposed method based on self-organization method is a way to escape of obstacle. Optimal path planning and obstacle avoidance, depending on its final goal will arrive at exactly the mobile robot. Simulation results show the validity of the proposed method.

  • PDF

Interactive Tree Modeling Method Suitable for Real-time Systems (실시간 시스템에 적합한 인터렉티브 나무 모델링 기법)

  • Kim, Jin-Mo;Cho, Hyung-Je
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.426-429
    • /
    • 2011
  • 광범위한 지형을 배경으로 하는 게임과 같은 실시간 시뮬레이션 시스템에서 사실적 표현을 높이는 중요한 요소 중 하나가 나무와 같은 자연물 표현이다. 하지만 시스템에 적합한 나무 모델을 매번 새롭게 제작하고 표현하는 일은 다소 어려움이 따른다. 본 연구는 이러한 문제를 해결하기 위하여 실시간 시스템에 적합한 다양하고 사실적인 나무를 모델링하는 방법을 설계한다. 이는 프랙탈 기반의 재귀적 계층 구조를 바탕으로 가지 성장의 자기조직화 처리를 결합하여 나무 성장 과정을 단순화시킴으로써 실시간 시스템에서 직관적이고 효율적으로 활용가능하게 한다. 또한 다양한 나무 모델을 자연스럽게 생성할 수 있도록 인터렉티브 제어 요소를 정의함은 물론 실시간 시스템 내 많은 수의 복잡한 나무 모델을 효율적으로 렌더링하기 위한 GPU를 기반으로 한 가지 표면에 대한 LOD 설정과 인스턴싱 방법을 추가하여 그 결과를 함께 보인다.

Generalized machine cell formation considering plant layout using self-organizing feature maps (공장배치를 고려한 SOFM 형태의 일반화된 기계-셀 형성기법)

  • 이종태;장인호;김동민
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.958-961
    • /
    • 1995
  • MODROC 기법이 대표적인 일반화된 기계-셀 형성 기법은 부품 생산비용, 부품가공시간, 공정순서, 로트 크기 등을 고려하여, 기계-셀을 형성함에 있어, 보다 현실적인 접근을 추구한 것이다. 그러나, 수리적 문제 해결의 한계로 인해 현실 접근성이 제한되며, 신경망을 이용한 기존의 기법들 역시 수리적 제한환경을 설정한 것이어서 현실적인 응용가능성이 떨어지고 있다. 본 논문에서는 공정순서와 공장배치를 고려하여 기계-셀의 효율적인 형성을 꾀하였다. 신경망 모델인 자기조직화 형성기법을 응용하였으며, 공장 작업영역과 기계-셀의 위치가 주어짐에 따라 공정순서를 고려하여 물류의 이동을 최소화하는 기계-셀의 형성 방법을 꾀하였다. 본 기계-셀 형성 방법은 기존의 방식에 비해 짧은 시간에 기계-셀을 형성할 수 있으며, 그에 따른 부품군의 형성은 공정을 고려하여 총 물류량을 감소시키는 방향으로 결정되는 장점을 갖고 있다. 또한, 다변화되는 환경에 대한 적응성과 예외적 요소(exceptional element)에 대한 셀 형성 및 처리가 매우 유연하게 나타내어 진다. 본 연구에서는 공정 간에 기계의 중복이 있는 경우의 기계-셀 형성 문제에 대해 제한된 기법을 적용하였다.

  • PDF

A self-organizing neural networks approach to machine-part grouping in cellular manufacturing systems (셀 생산 방식에서 자기조직화 신경망을 이용한 기계-부품 그룹의 형성)

  • 전용덕;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.48
    • /
    • pp.123-132
    • /
    • 1998
  • The group formation problem of the machine and part is a very important issue in the planning stage of cellular manufacturing systems. This paper investigates Self-Organizing Map(SOM) neural networks approach to machine-part grouping problem. We present a two-phase algorithm based on SOM for grouping parts and machines. SOM can learn from complex, multi-dimensional data and transform them into visually decipherable clusters. Output layer in SOM network is one-dimensional structure and the number of output node has been increased sufficiently to spread out the input vectors in the order of similarity. The proposed algorithm performs remarkably well in comparison with many other algorithms for the well-known problems shown in previous papers.

  • PDF

A Study on the Digital Hardware Implementation of Self-Organizing feature Map Neural Network with Constant Adaptation Gain and Binary Reinforcement Function (일정 학습계수와 이진 강화함수를 가진 SOFM 신경회로망의 디지털 하드웨어 구현에 관한 연구)

  • 조성원;석진욱;홍성룡
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.402-408
    • /
    • 1997
  • 일정 학습계수와 이진 강화함수를 지닌 자기조직화 형상지도(Self-Organizing Feature Map)신경회로망을 FPGA위에 하드웨어로 구현하였다. 원래의 SOFM 알고리즘에서 학습계수가 시간 종속형인데 반하여, 본 논문에서 하드웨어로 구현한 알고리즘에서는 학습계수가 일정인 값으로 고정되며 이로 인한 성능저하를 보상하기 위하여 이진 강화함수를 부가하였다. 제안한 알고리즘은 복잡한 곱셈 연산을 필요로 하지 않으므로 하드웨어 구현시 보다 쉽게 구현 가능한 특징이 있다. 1개의 덧셈/뺄셈기와 2개의 덧셈기로 구성된 단위 뉴런은 형대가 단순하면서 반복적이므로 하나의 FPGA위에서도 다수의 뉴런을 구현 할 수 있으며 비교적 소수의 제어 신호로서 이들을 모두 제어 가능할 수 있도록 설계하였다. 실험결과 각 구성부분은 모두 이상 없이 올바로 동작하였으며 각 부분이 모두 종합된 전체 시스템도 이상 없이 동작함을 알 수 있었다.

  • PDF

Prediction of Cutting Force using Neural Network and Design of Experiments (신경망과 실험계획법을 이용한 절삭력 예측)

  • 이영문;최봉환;송태성;김선일;이동식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1032-1035
    • /
    • 1997
  • The purpose of this paper is to reduce the number of cutting tests and to predict the main cutting force and the specific cutting energy. By using the SOFM neural network, the most suitable cutting test conditions has been found. As a result, the number of cutting tests has been reduced to one-third. And by using MLP neural network and regression analysis, the main cutting force and specific cutting energy has been predicted. Predicted values of main cutting force and specific cutting energy are well concide with the measured ones.

  • PDF