• 제목/요약/키워드: 자기조직신경망

검색결과 1건 처리시간 0.014초

자동차 스키드마크 인식을 위한 FE-SM/SONN (The FE-SM/SONN for Recognition of the Car Skid Mark)

  • 구건서
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권1호
    • /
    • pp.125-132
    • /
    • 2012
  • 본 논문은 차량이 급제동으로 인해 도로 위에 생성된 스키드마크와 같이 형태가 모호하게 나타난 영상을 인식하기 위해 FE-SM/SONN을 제안하였다. FE-SM/SONN은 타이어 트레드 패턴이 뭉개져서 나타나는 스키드마크 경우, 그 패턴이 모호한 영상으로 취득된다. 이를 인식하기 위해 퍼지 이론과 트레드 패턴의 특징을 이용한 자기 조직 신경망 인식기를 통해 스키드마크를 인식하는 방법이다. 이러한 실험을 위해 48개 타이어모델과 144개 스키드마크가 사용되었고, 전체 인식율은 89%이며, 비교 분석을 위해서는 기존 역전파 인식기에 비해 인식률 면에서 13.51%가 향상되었고, FE-MCBP에 비해 8.78% 향상을 보였다. 이 논문의 기대효과로는 모호한 영상의 특징을 추출하여 인식이 가능하였고, 트레드 패턴 영상이 그레이 영상으로 나타날 경우도 퍼지 이론에 의해 인식이 가능한 것으로 연구결과 나타났다.