• Title/Summary/Keyword: 자기적 잡음

Search Result 234, Processing Time 0.028 seconds

Development of an Active Magnetic Noise Shielding System for a Permanent Magnet Based MRI (영구자석 MRI를 위한 능동형 자기 잡음 차폐시스템 기술 개발)

  • 이수열;전인곤;이항노;이정한
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.181-188
    • /
    • 2003
  • In this paper, we introduce a magnetic noise shielding method to reduce the noise effects in permanent magnet based MRI systems. Through FEM electromagnetic analyses, we have shown that the magnetic noise component parallel to the main magnetic field is the major component that makes various artifacts in the images obtained with a permanent magnet based MRI. Based on the FEM analyses, we have developed an active magnetic noise shielding system composed of a magnetic field sensor, compensation coils, and a coil driving system. The shielding system has shown a noise rejection ratio of about 30dB at the frequency below several Hz. We have experimentally verified that the shielding system greatly improves the image quality in a 0.3 Tesla MRI system.

Design and Implementation of the Magnetic Detection System Using the Geological Magnetic Filter (자기환경필터를 이용한 자기표적 검출 시스템의 설계 및 제작)

  • Kim, Won-Ho;Choi, In-Kyu;Park, Jong-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.148-153
    • /
    • 1999
  • In this paper, we developed and implemented the geological magnetic filter for the improvements of the signal to noise ratio of the magnetic detection system. Using the geological magnetic filter, we can remove the coherent noises in the time domain and improve the signal to noise ratio of the magnetic detection system. Numerical simulation results show that geological magnetic filter can excellently remove the sensor misalignment effects and the regular short range local noise as well as it delete the coherent noises. We confirmed that the geological magnetic filter improved the signal to noise ratio about 19dB and deleted the coherent noises with restoring the source magnetic signal through experiments by implemented system.

  • PDF

공간 모델링을 이용한 자기지전류 탐사의 전자기 잡음 예측

  • Lee, Chun-Gi;Lee, Hui-Sun;Gwon, Byeong-Du
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.112-123
    • /
    • 2005
  • 자기지전류 탐사의 적용에 있어 인공잡음의 영향은 탐사의 승패를 좌우하는 중요한 요소이며 인공잡음의 영향을 최소화할 수 있는 탐사의 설계와 자료처리가 요구되고 있다. 본 연구에서는 수치공간자료를 이용한 공간모델링을 통해 MT 주파수 대역에서의 잡음을 예측하고 실제 탐사 자료와 비교분석하여 MT 잡음 모델링을 가능성을 살펴보았다. 수치지도로부터 추출된 잡음원일 가능성이 높은 건물, 도로, 고압 송전선에 의해 발생하는 전자기장의 강도를 지하매질의 전기전도도에 따른 전자기파의 전파 특성을 고려하여 예측하는 잡음모델을 제안하였다. 제안된 잡음모델로부터 예측된 잡음 파워와 실제 탐사를 통해 측정된 MT 자료와의 상관도 분석을 수행한 결과, 전반적으로 전기장에서는 넓은 주파수 대역에서 높은 상관관계를 보이는 반면 자기장은 60 Hz 부근의 대역에서만 상관관계를 가진다. 본 연구에서 제안된 공간모델링을 통한 잡음 예측은 특히 고도로 산업화되어가는 도시 주변지역에서의 MT 탐사를 수행하는데 있어 유용한 정보를 제공할 수 있을 것이다.

  • PDF

Noise Removal in Magnetic Resonance Images based on Non-Local Means and Guided Image Filtering (비 지역적 평균과 유도 영상 필터링에 기반한 자기 공명 영상의 잡음 제거)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.11
    • /
    • pp.573-578
    • /
    • 2014
  • In this letter, we propose a noise reduction method for use in magnetic resonance images that is based on non-local mean and guided image filters. Our method consists of two phases. In the first phase, the guidance image is obtained from a noisy image by using an adaptive non-local mean filter. The spread of the kernel is adaptively by controlled by implementing the concept of edgeness. In the second phase, the noisy images and the guidance images are provided to the guided image filter as input in order to produce a noise-free image. The improved performance of the proposed method is investigated by conducting experiments on standard datasets that contain magnetic resonance images. The results show that the proposed scheme is superior over the existing approaches.

3T 자기공명영상장치 내에서 측정한 뇌파로부터의 심장박동 제거를 위한 신호처리 방법

  • 김경환;윤효운;박현욱
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.76-76
    • /
    • 2003
  • 목적: fMRI와 뇌파의 동시측정 방법은 높은 시간적-공간적 해상도를 동시에 달성할 수 있는 뇌기능 측정을 가능케 하고, 각각의 방법이 제공하는 정보를 상호보완적으로 동시에 이용할 수 있도록 하는 유용한 방법이다. 그러나 자기공명영상을 얻기 위한 경사자계가 유발하는 잡음과 높은 자기장 내에서의 심장박동으로 인한 미세한 움직임 때문에 생기는 잡음이 뇌파신호의 질을 크게 저하하는 요소로 작용하여 이를 해결하기 위한 계측시스템의 최적화와 신호처리 방법의 개발이 요구된다. 본 논문에서는 평균차감법과 recursive least square 적응 필터링 방법에 기반한 심장 박동잡음의 감소를 위한 신호처리 방법의 개발 결과에 대한 연구 결과를 제시한다.

  • PDF

Magnetic Noise Reduction in MCG Using Spatial Filters (공간 필터를 이용한 심자도 신호에서의 자기잡음 제거)

  • Lee, Hana;Kim, Ki-Wang;Lee, Soo-Yeol;Cho, Min-Hyung;Heo, Young
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.287-292
    • /
    • 2003
  • Even though MCG has many advantages over ECG, MCG signa)s are easily corrupted by external magnetic noises Since multi-channel MCG signals are recorded simultaneously at many spatial positions, it is effective to apply spatial fitters as well as the conventional temporal filters to remove external magnetic noises. The spatial filters can be designed by utilizing the fact that the noise signals caused by external noise sources are more spatially correlated than the original MCG signals. In this paper, we introduce a spatial filtering method for the noise reduction in MCG based on the principal component analysis. Healthy volunteer study results obtained with a 61-channel MCG system are presented.

A Theory of the Geological Magnetic Filter for the Improvement of the Signal to Noise Ratio of the Magnetic Detection System (자기 이상검출 시스템의 신호 대 잡음비 개선을 위한 자기환경 필터 이론)

  • Kim, Won-Ho;Kim, Eun-Ro;Yang, Chang-Sub;Choi, In-Kyu;Choi, Jun-Rim;Park, Jong-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.458-465
    • /
    • 1997
  • In this paper, a theory of the geological magnetic filter for the improvements of the signal to noise ratio of the magnetic detection system has been developed. The geological magnetic filter takes two sequences of magnetic fields measured from the reference sensor and the detector sensor and calculate the correlations between them in the frequency domain. Using the filter, we can remove the coherent noises in the time domain and improve the signal to noise ratio of the magnetic detection system. With the recent developments of the DSP hardware technology the geological magnetic filter can be easily implemented using the digital signal processor. We show the ability of the geological magnetic filter under various circumstances through computer simulations. Numerical simulation results show that geological magnetic filter can excellently remove the sensor misalignment effects and the regular short range local noise as well as it delete the coherent noises.

  • PDF

Analysis of Quantization Noise in Magnetic Resonance Imaging Systems (자기공명영상 시스템의 양자화잡음 분석)

  • Ahn C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.42-49
    • /
    • 2004
  • Purpose : The quantization noise in magnetic resonance imaging (MRI) systems is analyzed. The signal-to-quantization noise ratio (SQNR) in the reconstructed image is derived from the level of quantization in the signal in spatial frequency domain. Based on the derived formula, the SQNRs in various main magnetic fields with different receiver systems are evaluated. From the evaluation, the quantization noise could be a major noise source determining overall system signal-to-noise ratio (SNR) in high field MRI system. A few methods to reduce the quantization noise are suggested. Materials and methods : In Fourier imaging methods, spin density distribution is encoded by phase and frequency encoding gradients in such a way that it becomes a distribution in the spatial frequency domain. Thus the quantization noise in the spatial frequency domain is expressed in terms of the SQNR in the reconstructed image. The validity of the derived formula is confirmed by experiments and computer simulation. Results : Using the derived formula, the SQNRs in various main magnetic fields with various receiver systems are evaluated. Since the quantization noise is proportional to the signal amplitude, yet it cannot be reduced by simple signal averaging, it could be a serious problem in high field imaging. In many receiver systems employing analog-to-digital converters (ADC) of 16 bits/sample, the quantization noise could be a major noise source limiting overall system SNR, especially in a high field imaging. Conclusion : The field strength of MRI system keeps going higher for functional imaging and spectroscopy. In high field MRI system, signal amplitude becomes larger with more susceptibility effect and wider spectral separation. Since the quantization noise is proportional to the signal amplitude, if the conversion bits of the ADCs in the receiver system are not large enough, the increase of signal amplitude may not be fully utilized for the SNR enhancement due to the increase of the quantization noise. Evaluation of the SQNR for various systems using the formula shows that the quantization noise could be a major noise source limiting overall system SNR, especially in three dimensional imaging in a high field imaging. Oversampling and off-center sampling would be an alternative solution to reduce the quantization noise without replacement of the receiver system.

  • PDF

Prediction of Electromagnetic Noise using Spatial Modelling in Magnetotellurics (공간 모델링을 이용한 자기지전류 탐사의 전자기 잡음 예측)

  • Lee, Choon-Ki;Lee, Heui-Soon;Kwon, Byung-Doo
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.251-261
    • /
    • 2005
  • The quality of MT (magnetotellurics) data highly depends on the level of artificial noise form industrial sources. We have conducted the feasibility study of MT noise modelling using digital spatial data and spatial modelling through the comparison between the predicted and the measured MT noises. A simple noise model predicting the intensity of electromagnetic field radiated from the latent noise sources, that is, the electric facilities in the building, road and high-voltage powerline, is developed in consideration of the propagation property of electromagnetic waves. From the analysis of correlation between the predicted and the measured noise power, the correlation coefficients of electric field are higher than those of magnetic field in whole frequency band. The magnetic field component has the high correlation in the narrow band near 60 Hz only. The spatial noise modelling proposed in this study would provide some useful informations for the MT surveys in the noisy environment like urban area.

Analysis of Transient Signal Using Autocorrelation-like Matrix (자기상관유사행렬을 이용한 과도기적 신호의 분석)

  • 최규성;김영수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.7
    • /
    • pp.1689-1698
    • /
    • 1998
  • In this paper, we present a new method for estimating the parameters of transient-type signal in additive white Gaussian noise. This method makes use of the truncated singular value decomposition of an extended-order auto-correlation-like matrix based on the linear-prediction model. The method is tested on data consisting of two exponentially dampled sinusoidal signals with the same damping factor and different damping factor. Simulation results are illustrated to demonstrate the better performance of the method applied to the auto-correlation-like matrix than that applied to the data matrix.

  • PDF