• Title/Summary/Keyword: 자기이력곡선

Search Result 94, Processing Time 0.019 seconds

CoFe2O4 Films Grown on (100) MgO Substrates by a rf Magnetron Sputtering Method ((100) MgO 기판에 성장한 CoFe2O4 박막의 물리적 및 자기적 특성에 관한 연구)

  • Lee, Jae-Gwang;Chae, Kwang-Pyo;Lee, Young-Bae
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.140-143
    • /
    • 2006
  • Single crystalline $CoFe_2O_4$ thin films on (100) MgO substrates were fabricated using a rf magnetron sputtering method. The deposited films were investigated for their crystallization by X-ray diffraction, Rutherford back-scattering spectroscopy and field emission scanning electron microscopy. When a cobalt ferrite film was deposited at the substrate temperature of $600^{\circ}C$, squared grains of about 200 nm were uniformly distributed in the film. However, the grains became irregular and their sizes also varied from 30 to 150 nm when the substrate temperature was $700^{\circ}C$. Hysteresis loops of a film deposited at $600^{\circ}C$ showed that the magnetically easy axis of the film was perpendicular to the substrate surface. Except for the squareness ratio, magnetic properties of the cobalt ferrite films grown by the present rf sputtering method were as good as those of the films prepared by a laser ablation method: The in-plane and perpendicular coercivities were 283 and 6800 Oe, respectively. As the thickness of the deposited film increased twice, the saturation magnetization became double but the coercivity remained unchanged. However, deposition of the Co ferrite films with a higher rf powder decreased the squareness ratio and the perpendicular coercivity of the films.

The Growth of Magnetic DyBiIG by sol-gel Method (Sol-gel법에의한 BiDy-철 석류석의 합성)

  • Park, C.M.;Lee, S.H.;Kim, Seung-Hoon;Jang, Hee-Dong
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.1
    • /
    • pp.36-40
    • /
    • 2003
  • We have grown D $y_{x}$B $i_{3-x}$F $e_{5}$ $O_{12}$ (x = 0.5,1.0, 1.5,2.0) magnetic garnet thin films upon $Al_2$O3i and GGG substrate using Pechini process. The annealing temperature to get single phase D $y_{x}$B $i_{3-x}$F $e_{5}$ $O_{12}$ garnet is dependent on substrate, i.e. the annealing temperature for GGG substrate il 5$0^{\circ}C$ lower than that for $Al_2$ $O_3$ substrate. The grains of garnet thin film grown on GGG (111) plane align along [111] direction, and in this case the hysteresis curve does not saturate up to H : 5000 Oe. We attribute this phenomenon to rotation magnetization process. The maximum amount of Bi substitution in polycrystalline D $y_{x}$B $i_{3-x}$F $e_{5}$ $O_{12}$ thin film prepared by Pechini process is restricted to 2.0 Bi atom/unit cell, and this value is less than that in single garnet crystall grown by LPE method.own by LPE method.ethod.

Magnetic and Electric Transport Properties of MnTe Thin Film Grown by Molecular Beam Epitaxy (분자선 증착법에 의해 성장한 MnTe 박막의 자기적 및 전기수송 특성)

  • Kim, Woo-Chul;Bae, Sung-Whan;Kim, Sam-Jin;Kim, Chul-Sung;Kim, Kwang-Joo;Yoon, Jung-Bum;Jung, Myung-Hwa
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.81-85
    • /
    • 2007
  • MnTe layers of high crystalline quality were successfully grown on Si(100) : B and Si(111) substrates by molecular beam epitaxy (MBE). Under tellurium-rich condition and the substrate temperature around $400^{\circ}C$, a layer thickness of $700{\AA}$ could be easily obtained with the growth rate of $1.1 {\AA}/s$. We investigated the structural, magnetic and transport properties of MnTe layers by using x-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry, and physical properties measurement system (PPMS). Characterization of MnTe layers on Si(100) : B and Si(111) substrates by XRD revealed a hexagonal structure of polycrystals with lattice parameters, ${\alpha}=4.143{\pm}0.001{\AA}\;and\;c=6.707{\pm}0.001{\AA}$. Investigation of magnetic and transport properties of MnTe films showed anomalies unlike antiferromagnetic powder MnTe. The temperature dependence of the magnetization data taken in zero-field-tooling (ZFC) and field-cooling (FC) conditions indicates three magnetic transitions at around 21, 49, and 210 K as well as the great irreversibility between ZFC and FC magnetization in the films. These anomalies are attributable to a magnetic-elastic coupling in the films. Magnetization measurements indicate ferromagnetic behaviour with hysteresis loops at 5 and 300 K for MnTe polycrystalline film. The coercivity ($H_c$) values at 5 and 300 K are 55 and 44 Oe, respectively. In electro-transport measurements, the temperature dependence of resistivity revealed a noticeable semiconducting behaviours and showed conduction via Mott variable range hopping at low temperatures.

Degradation Evaluation of Mechanical Properties for 12Cr Ferrite Heat Resisting Steel by Reversible Permeability (가역투자율에 의한 12Cr 페라이트 내열강의 역학적 물성의 열화평가)

  • Ryu, Kwon-Sang;Kim, Min-Gi;Nahm, Seung-Hoon;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.464-470
    • /
    • 2010
  • The integrity of the industrial equipment in use under high temperature and high pressure must be assessed by regularly measuring the degraded mechanical properties during service time. In order to nondestructively monitor the degraded mechanical properties of industrial equipment, a measuring method of the reversible permeability(RP) using surface type probe is presented. The method for measuring the RP is based on that RP is the differential value of hysteresis loop. The RP is exactly the foundation hatmonics induced in a detecting coil measured by lock-in amplifier tuned to a frequency of the alternating perturbing magnetic field. The peak of RP is measured around the coercive force. Steel material used in this work was 12Cr ferritic heat resisting steel. The eleven kinds of samples aged during different times under same temperature ($700^{\circ}C$) were prepared. Peak interval of reversible permeability(PIRP), Vickers hardness, and tensile strength measured for the aged samples decreased abruptly for short aging time (below 500 h), but the change became small at a long aging time. Vickers hardness and tensile strength linearly decreased as RIRP decreased, so the degraded mechanical properties of 12Cr ferritic heat resisting steel could be nondestructively evaluated by measuring RIRP.