• 제목/요약/키워드: 자기유변연마

검색결과 31건 처리시간 0.034초

자기유변유체 연마공정을 응용한 미세부품의 형상가공 (Farbrication of Repeated 3D Shapes using Magnetorheological Fluid Polishing)

  • 김용재;민병권;이상조;석종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1265-1268
    • /
    • 2005
  • Due to the increase of the need for reliable high density information storage devices, the demand for precise machining of the slider in HDD is rapidly growing. The present fabrication process of slider bears some serious problems such as low yield ratio in mass production, which is mainly caused by inefficient machining processes in shaping camber and crown on the slider. In order to increase slider yield ratio in HDD, a new systematic machining process is proposed and developed in this work. This new machining process includes the use of magnetorheological (MR) fluid, a smart polishing material generally used for ultra-fine surface finishing of micro structures. It is shown that the process proposed in this work enables to make camber and crown pattern in the scale of few tens of nanometers. Experiment results shows that the MR polishing can be also used for shaping process of micro structures.

  • PDF

자기유변유체를 이용한 연마가공 시스템 (A Magnetorheological Polishing System)

  • 김영민;신영재;이응숙;이동주
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.324-328
    • /
    • 2003
  • The Magnetoeheological fluid has the properties that it's viscosity has dramastic changed under some magnetic fields therefore, Magnetorhlogical fluids has been used for micro polishing of the micro part( for example, a aspherical surface in a micro lens). The polishing process may appears as follows. A part rotating on the spindle is brought into contact with an Magnetorhological finshing(MRF) fluids which is set in motion by the moving wall. In the region where the part and the MRF fulid ate brought into contact, the applied magnetic field creates the conditions necessary for the material removal from the part surface. The material removal takes place in a certain region contacting the surface of the part which can be called the polishing spot or zone. The polishing mechanism of the material removal in the contact zone is considered as a process governed by the particularities of the Bingham flow in the contact zone. Resonable calculated and experimental magnitudes of the material removal rate f3r glass polishing lends support the validity of the approach.

  • PDF

자기유변유체를 이용한 연마가공 시스템의 개발 (The Development of Polishing System a Magnetorheological Fluids)

  • 신영재;김동우;이응숙;김경웅
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.46-52
    • /
    • 2004
  • The Magnetorheological fluid has the properties that its viscosity has drastic changed under some magnetic fields therefore, Magnetorheological fluids has been used fur micro polishing of the micro part(for example, a spherical surface in a micro lens). The polishing process may appears as follows. A part rotating on the spindle is brought into contact with an Magnetorheological finishing(MRF) fluids which is set in motion by the moving wall. In the region where the part and the MRF fluid are brought into contact, the applied magnetic field creates the conditions necessary for the material removal from the part surface. The material removal takes place in a certain region contacting the surface of the part which can be called the polishing spot or zone. The polishing mechanism of the material removal in the contact zone is considered as a process governed by the particularities of the Bingham flow in the contact zone. Resonable calculated and experimental magnitudes of the material removal rate for glass polishing lends support the validity of the approach.

네오디뮴 자석을 이용한 라운드 엔드밀 타입 MR연마 시스템 개발 (Development of a Round endmill Type MR Polishing System Using Neodymium Magnets)

  • 홍광표;신봉철;김동우;조명우;제태진
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.316-321
    • /
    • 2011
  • Recently, it has been studied machining of micro parts with increasing demands for ultra precision parts. However, many engineering problems have already begun in polishing of optical parts or lens. As a method to overcome such problems, a new technology for the polishing of the target surface is being studied by controlling abrasives using MR fluids which are sensitive to magnetic fields. Since the current MR polishing system uses a big electromagnet, and is difficult to polish micro parts or spherical lens. Therefore, in this study, a round endmill type MR polishing system was developed to polish a three-dimensional structure which has spherical or inclined plane. And then, series of experiments were performed to verify the polishing performance of the developed round endmill type MR polishing system.

MR유체를 이용한 미세 채널구조물의 표면연마 (Surface polishing of Micro channel using Magneto-Rheological fluid)

  • 이승환;김욱배;민병권;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1873-1876
    • /
    • 2003
  • Magneto-rheological polishing is a new technology used in precision polishing. It utilizes magneto-rheological fluid. nonmagnetic polishing abrasive, aqueous carrier fluids in magnetic field to remove material from a part surface. Silicon micro channel as work piece is fixed in the slurry which is made of MR fluid and CeO$_2$(10 vol%) abrasive particles. And permanent magnet rotate in the slurry to transfers magnetic force to abrasive particles by increasing yield strength of MR fluid. so, the obtained bottom surface roughness of micro channel by experiment reduced to Ra 0.010 $\mu\textrm{m}$ Rmax 0.103 $\mu\textrm{m}$ and finwall surface roughness of micro channel reduced to Ra 0.018 $\mu\textrm{m}$ Rmax 0.468 $\mu\textrm{m}$. At optimum conditions of variables, the workpiece as silicon micro channel have about 24 times smaller surface roughness than before polishing.

  • PDF

마그네토리오메타 제작에 관한 연구 (A Study on the Fabrication of Magnetorheometer)

  • 김영민;신영재;이응숙;김동우;이동주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.496-500
    • /
    • 2004
  • A new, commercially available polishing process called magnetorheological finishing is used to polish and figure precision optics. To understand and model this process correctly it is important to determine the mechanical properties of the fluid under the influence of the magnetic field. Magnetorheological (MR) fluids are commonly modeled as Bingham fluids, so one of the essential properties to measure is the yield stress. Since MR fluids are inherently anisotropic, the yield stress will depend on the mutual orientation of the magnetic field and the direction of deformation. The relative orientation of the field and deformation in polishing does not coincide with common rheological setups, so a new rheometer has been designed and tested. This new magnetorheometer design has been shown to give correct stresses during calibration experiments using Newtonian fluids with a known viscosity. The measured stress has also been shown to have a magnitude consistent with published finite element approximations for magnetic fluids. The design of the instrument was complicated because of the requirements imposed upon the magnetic field, and the difficulty in satisfying the no slip boundary condition. Our results show the importance of having a homogeneous field in the test region during measurements. The solutions to these problems and discussion of the measurements on nonmagnetic and magnetic fluids are given.

  • PDF