• Title/Summary/Keyword: 자기소거

Search Result 49, Processing Time 0.025 seconds

Effects of Demagnetization Field in Patterned Micro-magnetic Film Elements (패턴 된 미크론 자기박막 소자에서의 자기소거장 효과분석)

  • Kim, Ki-Chul;Suh, Jeong-Dae;;Lee, C.S.;Song, Y.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.3
    • /
    • pp.103-108
    • /
    • 2003
  • A micromagnetic model and a Stoner-Wohlfarth model are used to analyze the effect of demagnetization field in patterned permalloy films. Permalloy films of 20 $\mu\textrm{m}$${\times}$(40 $\mu\textrm{m}$∼200 $\mu\textrm{m}$) are fabricated by DC magnetron sputtering and photo lithography. Measured magnetoresistance data of patterned permalloy films are compared with simulation results. The micromagnetic model gives a better agreement with the measured MR data than the Stoner-Wohlfarth model. Based on the simulation results, we propose a revised approximation formula for dernagnetization field in Stoner- Wohlfarth model for a few fm patterned magnetic films.

An Approximated Model of the Coefficients for Interchannel Interference of OFDM System with Frequency Offset (주파수 오프셋이 있는 OFDM시스템에서 채널간간섭의 간섭계수 근사화 모델)

  • Li, Shuang;Kwon, Hyeock-Chan;Kang, Seog-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.917-922
    • /
    • 2018
  • In the conventional interchannel interference self-cancellation (ICI-SC) schemes, the length of sampling window is the same as the symbol length of orthogonal frequency division multiplexing (OFDM). Thus, the number of complex operations to compute the interference coefficient of each subchannel is significantly increased. To solve this problem, we present an approximated mathematical model for the coefficients of ICI-SC schemes. Based on the proposed approximation, we analyze mean squared error (MSE) and computational complexity of the ICI-SC schemes with the length of sampling window. As a result, the presented approximation has an error of less than 0.01% on the MSE compared to the original equation. When the number of subchannels is 1024, the number of complex computations for the interference coefficients is reduced by 98% or more. Since the computational complexity can be remarkably reduced without sacrificing the self-cancellation capability, it is considered that the proposed approximation is very useful to develop an algorithm for the ICI-SC scheme.

Analyses of Laser Induced Demagnetization and Remagnetization in Carbon Doped FePt Thin Films (탄소가 도핑 된 FePt 박막에서의 펨토 초 펄스 레이저에 의한 자기 소거와 회복 분석)

  • Song, Hyon-Seok;Ko, Hyun Seok;Hong, Jung-Il;Shin, Sung-Chul;Lee, Kyeong-Dong;Park, Byong-Guk
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.2
    • /
    • pp.39-42
    • /
    • 2015
  • After preparing carbon-doped FePt films by dc magnetron sputtering, we observed ultrafast demagnetization and its recovery by means of a time-resolved magneto-optical Kerr effect technique. We confirm that the degree of $L1_0$ ordering is decreased and coercivity is changed, as the carbon concentration increases. All samples are demagnetized within ~5 ps after the femtosecond laser pulse heated the sample. Interestingly, ultrafast relaxation time, which indicates fast magnetization recovery, increases as the carbon concentration increases due to the low spin-orbit coupling of carbon.

Quantitative Evaluation of Optimized Fat-Suppression Techniques for T1 Weighted Cervical Spine MR Imaging: Comparison of TSE-CHESS and TSE-SPAIR (T1 강조 경추자기공명영상에 대한 최적의 지방소거기법의 정량적 평가: TSE-CHESS 과 TSE-SPAIR 의 비교)

  • Goo, Eun-Hoe
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.529-536
    • /
    • 2013
  • The purpose of this study is to know clinical usefulness for fat suppression of the body curved portion compared with TSE-CHESS and TSE-SPAIR technique. A total of 25 normal volunteers without cervical spine disease were studied on a 3.0 T MRI scanner. As a quantitative analysis, PSNRs and CNRs were evaluated by using two methods for fat suppression of the body curved portion. As a results, PSNRs and CNRs for fat suppression were significantly greater for the TSE-SPAIR technique compared to TSE-CHESS technique. In conclusion, this study showed that a TSE-SPAIR technique has improved PSNRs and CNRs for evaluating of fat suppression in the body curved portion. These conclusions in the future will be provided information in diagnosis of fat suppression for the body curved portion.

Quantitative Evaluation of Optimized Fat-Suppression Techniques for T2 Weighted Abdominal MR Imaging : Comparison of TSE-SPIR and GE-PROSET (T2 강조 복부자기공명영상에 대한 최적의 지방소거 기법의 정량적 평가 : TSE-SPIR 와 GE-PROSET 비교)

  • Goo, Eun-Hoe
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4962-4969
    • /
    • 2013
  • The purpose of this experiment is to evaluate of optimized FS techniques for T2 weighted abdominal MRI compared of TSE-SPIR fat suppression and GE-PROSET fat suppression. All MR examinations were performed on a 1.5 T(Philips, Medical System, Achieva) scanner using 16 channel mult-coils. All images were performed in the axial plane using TSE-SPIR and GE-PROSET. The mean SNRs of the retroperitoneal and mesenteric fat for TSE-SPIR and GE-PROSET were 31.50, 4.15 and 32.39, 7.03. The mean CNRs of the bowel and retroperitoneal, mesenteric fat for TSE-SPIR and GE-PROSET were 52.69, 74.54 and 26.12, 68.78). The delineation of bowel wall margins with TSE-SPIR(2.4) and GE-PROSET(1.8) were significantly improved using TSE-SPIR. The delineation of pancreas wall with TSE-SPIR(1.90), GE-PROSET(2.80) were significantly improved using GE-PROSET. In conclusion, TSE-SPIR fat suppression was superior to GE-PROSET fat suppression in T2 WI FS abdominal MRI.

An Interchannel Interference Self-Cancellation Scheme for the Orthogonal Frequency Division Multiplexing System (직교 주파수분할다중화 시스템을 위한 채널간간섭 자기소거법)

  • Chen, Huijie;Kang, Seog-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.729-736
    • /
    • 2018
  • Due to the frequency offset, interchannel interference (ICI) is occurred in the received symbols of the orthogonal frequency division multiplexing (OFDM) systems. The ICI self-cancellation (ICI-SC) technique appropriately adjusts the subchannel signal assignment of the OFDM symbols, thereby canceling the interference caused by other subchannels. The conventional adjacent symbol repetition (ASR) method can reduce the interference caused by remote subchannels. However, it may not mitigate or even increases the ICI produced by some nearest subchannels. To solve the problem, a new ASR based ICI-SC technique is proposed and its performance is analyzed in this paper. Here, a t-parameter obtained by the interference coefficients of 3 successive subchannels is applied. As a result, the proposed method has the same capability to reduce the influence of remote subchannels. However, it can reduce the ICI caused by the nearest subchannels significantly.

A Study on the Transmitter Design for Transmitting Output Power Enhancement of Active Magnetic Sensor (능동형 자기센서의 송신출력 향상을 위한 송신기 설계에 관한 연구)

  • Chung, Hyun-Ju;Yang, Chang-Seob;Jeon, Jae-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.5
    • /
    • pp.159-165
    • /
    • 2013
  • A active magnetic sensor has been widely used in the underwater guided weapon system because it is able to detect a target accurately in close range, but the target doesn't have any good countermeasure to overcome the threat from the active magnetic sensor. Recently, in order to increase the damage area of target by shock wave with explosion of the underwater weapon system and to detect small target, the maximum target detection range of the active magnetic sensor needs to be increased. One method for improving maximum target detection range is to improve output power from transmitter through demagnetization factor minimization of a transmitting core. Thus, in this paper, we describe the study results on the transmitter core shape design to enhance output power of the active magnetic sensor.