본 논문은 2000년 1월부터 2014년 10월까지의 시계열 자료를 사용하여 이자율과 운임이 선가에 미치는 영향을 실증분석하였다. 선행연구와 달리, 동태적 고든(Gordon) 모형을 통하여 이자율이 할인율로써 선가에 미치는 영향을 고려하였으며, 이자율과 운임이 선가에 미치는 동태적 영향을 파악하기 위해 벡터자기회귀모형과 충격반응분석, 예측오차분산분해를 활용하였다. 그 결과는 다음과 같다. 먼저 벡터자기회귀모형의 추정은 선가와 이자율이 유의한 음(-)의 상관성을 가지며, 선가와 운임의 유의한 양(+)의 관계가 존재한다는 것을 보여주었다. 이는 선가의 동태적 고든(Gordon) 모형 하에서 선가는 이자율과 운임에 의존함을 의미한다. 둘째, 이자율과 운임의 동태적 영향이 지속되는 기간을 파악하기 위해 충격반응분석을 실시하였다. 그 결과, 이자율과 운임의 충격에 대한 선가의 반응은 모두 약 7개월 간 지속되는 것을 확인하였다. 마지막으로 예측오차분산분해의 실증결과는 선가 변동을 설명하는데 있어 운임의 영향이 이자율보다 상대적인 비중이 크다는 것을 보여주었다.
본 논문에서는 상수도시설을 효율적으로 운영하는 데 필요한 1일 급수량 수요를 예측하는 방식에 대하여 인공지능(Artificial Inteligence)이라 불리는 퍼지 뉴론(fuzzy neuron)을 이용하여 연구하였다. 퍼지뉴론이란 퍼지정보(fuzzy information)를 입력으로 받아들이고 처리하는 퍼지 신경망을 일컫는 말이다. 본 연구에서는 소속함수와 퍼지규칙을 신경망으로 학습하는 기능인 적응식 학습방법을 통하여 1일 급수량을 예측하였으며 연구대상 지역으로는 광주광역시를 선정하였다. 또한 1일 급수량 예측에 있어서 필요한 변수 선택을 위해 입력자료를 상관분석, 자기상관, 부분자기상관, 교차상관 분석 등을 하였으며 동정된 입력변수는 급수량, 평균기온, 급수인구이다. 먼저 급수량, 평균기온, 급수인구로 모델을 구성하였고, 한편으론 기상청의 기후예보자료를 신뢰할 수 없는 경우에는 급수량을 예측할 수 있도록 급수량 자료만으로 모델을 구성하여 그 유효성을 검증하였다. 제안된 모형식은 사고 등의 인위적인 조작(단수 등)이 가해지는 시기를 포함하고도 실측치와 모형의 예측치와의 오차율이 최대 18.46%, 평균2.36% 이내로 나타나, 모형의 결과는 상수도 시설의 운용 및 급·배수관망의 실시간 제어에 많은 도움을 주리라 생각된다.
사용자 위치 추정 시 위성 궤도는 GPS에서 송신하는 방송궤도력을 주로 이용하는데, 이를 이용할 경우 수 미터의 오차를 유발하기 때문에 높은 정확도가 필요한 분야에서는 사용할 수 없다. 오차를 유발하는 요소 중 위성 궤도와 시계에 의한 오차는 IGS에서 제공하는 RTS (real-time service)로 보정할 수 있다. 본 논문에서는 3개월간 방송궤도력과 RTS 보정정보의 궤도 및 시계 정확도를 분석하였다. IGS final을 기준으로 단일 위성과 전체 위성의 3개월간 궤도 및 시계 오차 분석을 수행하였으며, 사용자의 위치와 위성의 종류에 따른 오차 변화도 분석하였다. 그림자 조건, 태양활동, 지자기활동과 오차들과의 상관관계도 분석하였다. 보정정보에 지연시간을 적용하고 이를 다항식으로 모델링한 후 외삽하여 실제 RTS 보정정보와 궤도 및 시계정확도를 비교하였다. 방송궤도력과 RTS 보정정보가 적용된 방송궤도력으로 데이터로 PPP를 수행하고 1일 위치 추정성능을 분석하였다. 그 결과 RTS 적용 시 3D 궤도오차와 시계 오차는 방송궤도력의 1/20, 1/3 수준이었으며, 위치해의 3D 오차는 방송궤도력의 1/5 수준으로 나타났다.
본 논문에서는 웨이브렛 변환을 이용한 새로운 시지연 추정방법인 WTD-LMSTDE을 제안하였다. 이 방법은 시평면에서 입력 신호 자기상관 행렬의 고유치 분포를 줄임으로서 수렴속도를 향상시켰다. 이 알고리즘의 성능을 시불변과 시변인 경우에 대해서 평가하였다. 결과로서 시불변 시지연의 경우에, WTD-LMSTDE의 추정 정확도가 LMSTDE보다 SNR에 따라서 3.3%에서 12.5%까지 개선되었다. 시변 시지연의 경우에는, 선형적으로 증가하는 자연 환경에서 WTD-LMSTDE의 평균 오차 전력이 잡음이 없는 상태에서 LMSTDE와 비교하여 2.4dB정도 감소하였다. 결론적으로 WTD-LMSTDE의 성능이 LMSTDE보다 우수함을 확인할 수 있었다.
In case measurements are made on units of production in time order, it is reasonable to expect that the measurement errors will sometimes be first order autocorrelated, and a technique to test such autocorrelation is required to give good control of the productive process. Tool-wear process provide an example for which regression model can sometimes be useful in modeling and controlling the process. For the control of such process, we present a simple method for testing first order autocorrelation in regression errors. The method is based on Bayesian test method via Bayes factor and derived by observing that in general, a Bayes factor can be written as the product of a quantity called the Savage-Dickey density ratio and a correction factor ; both terms are easily estimated from Gibbs sampling technique. Performance of the method is examined by means of Monte Carlo simulation. It is noted that the test not only achieves satisfactory power but eliminates the inconvenience occurred in using the well-known Durbin-Watson test.
본고(本稿)에서는 현재의 경제상황을 잘 반영하는 건설투자활동(建設投資活動)의 단기예측모형(短期豫測模型)을 정립하고자 먼저 관련 시계열자료의 안정성(安定性) 여부(與否)와 순환성(循環性), 계절성(季節性)의 특성을 살펴본 후 여러 단기모형의 예측력(豫測力), 정합성(整合性), 설명력(說明力)을 비교 검토했다. 단위근(單位根) 검정(檢定)과 자기상관계수(自己相關係數) 스펙트랄 밀도함수 분석의 결과, 건설관련 시계열자료들이 대체로 단위근(單位根)을 갖지 않음으로써 안정적이고 주기적인 순환변동을 하고 있으며, 시차변수의 설명력이 높은 특성을 나타내었다. 또한 건설투자자료의 특성이 선행지표(先行指標)인 건축허가연면적(建築許可延面積) 및 건설수주액(建設受注額)과 아주 유사하여 건설투자 단기예측에 있어서 두 지표 사이의 시차관계(時差關係) 파악이 중요함을 알 수 있었다. 제(第)III장(章)에서는 단변량(單變量) 시계열모형(時系列模型)으로 ARIMA모형(模型)과 승법선형추세예측모형(乘法線型趨勢豫測模型)을, 다변량(多變量) 시계열모형(時系列模型)으로는 첫째, 선행지표(先行指標)를 이용한 1차자기회귀모형(次自己回歸模型), VAR모형(模型), 둘째 GNP자료를 이용한 거시경제모형의 단순한 축약형모형(縮約型模型)과 VAR모형(模型)을 제시하고 이들을 비교 평가하였다. 이에 따르면 단변량 시계열모형보다는 다변량 시계열모형이 시간이 경과할수록 예측오차(豫測誤差)가 커지지 않는다는 점에서 우수한 것으로 나타났으며, 다변량모형 중에서도 벡터자기회귀모형이 여타 모형보다 절대예측오차평균(絶對豫測誤差平均), 평균자승근(平均自乘根) 퍼센트 오차(誤差), 결정계수(決定係數) 등 모든 면에서 우수한 것으로 평가되었다. 이는 최근 건설투자가 추세에서 벗어난 급증세를 지속하고 있음을 고려할 때 타당한 결론이라 생각된다.
본 논문에서는 분산이 각각 다른 이분산성을 갖는 비선형 시계열 자료를 가지고, 비선형 시계열 모형중 1차 일반화 확률계수 자기회귀모형(GRCA(1))과 자료의 형태에 상관없이 적용할 수 있는 신경망 모형을 이용하여 예측을 해서 어느 모형이 최소 평균예측오차제곱의 기준에서 비선형 시계열 자료의 예측에 적합한지를 비교 분석 하는 것이다. 조건부 이분산 모형에 따르는 자료로 확인된 종합주가지수 변동율에 대한 사례 분석 결과를 보면 신경망 모형은 단기 예측에서 좋은 예측 결과를 보였고, 비선형 모형인 GRCA(1) 모형은 장기 예측에서 좋은 예측 결과를 보여 주었다.
수리 또는 계량적 모형을 사용하는 사회과학연구에서 분석의 초점은 종속변수와 설명변수의 관계를 밝히는 것, 즉 설명 중심의 모형(explanatory modeling)이 지금까지 주류를 이루었다. 반면 예측(prediction) 능력 제고에 초점을 맞춘 분석은 드물었다. 본 연구에서는 이론 및 가설을 검증하거나 변수 간의 관계를 밝히는 설명 중심의 모형이 아니라 신규 관찰치에 대한 예측 오차를 줄이는, 예측 중심의 비모수 모형(non-parametric model)을 검토하였다. 서울시 강남구를 사례지역으로 선정한 후, 2011년부터 2014년까지 신고된 단독주택 실거래가를 기초자료로 하여 주택가격을 추정하였다. 적용한 비모수 모형은 기계학습 분야에서 제시된 일반가산모형(generalized additive model), 랜덤 포리스트, MARS(multivariate adaptive regression splines), SVM(support vector machines) 등이며 비교적 최근에 개발된 MARS나 SVM의 예측력이 뛰어남을 확인할 수 있었다. 마지막으로 이러한 비모수 모형에 공간적 자기상관성을 추가적으로 반영한 결과, 모형의 가격 예측력이 보다 개선되었음을 알 수 있었다. 본 연구를 계기로 그간 모수 모형에 집중되었던 부동산 가격추정 방법론이 비모수 모형으로 확대 및 다양화되기를 기대한다.
본고는 1980-2009년 기간 인도의 주별 1인당 소득 자료를 이용하여 지역별 불균형 성장을 분석하였다. 전통적인 회귀모형과 공간자기회귀모형을 활용하여 분석한 결과, 두 가지 분석 모두에서 초기소득수준이 경제성장률과 상관관계가 있다는 증거를 발견하지 못하였다. 하지만 공간시차모형 및 공간오차모형에서 공간요소가 주별 경제성장에 영향을 미친다는 증거를 발견하였다. 일부 주들(outliners)을 제외하여 공간효과를 재분석한 결과, 공간적 영향이 더 강하게 나타난 것은 물론 초기소득변수가 비록 통계적으로 유의하지는 않지만 음(-)의 값에서 양(+)의 값으로 전환되었다. 더욱이, 공간효과를 나타내는 두 계수의 값이 통계적으로 유의한 음(-)의 값을 갖는 것으로 추정되었다. 또한 변이계수를 이용하여 주별 소득 분산을 계산 한 결과, 주별 소득 분산은 더욱 확대되고 있는 것으로 계상되었다. 따라서 인도의 주별 경제성장의 격차는 수렴보다는 확대되고 있다고 해석된다. 그 이유는 최근에 인도경제가 급속하게 성장하면서 일부 주들은 다른 주들보다 더 빠르게 성장하는 반면, 상대적으로 경제개발정책에서 소외된 지역의 주들은 느리게 성장하고 있기 때문으로 해석된다. 따라서 인도경제는 급속하게 성장하는 기간 동안은 지역별 성장의 격차는 지속될 가능성이 높은 것으로 분석된다.
원주시 저고도 지역에서의 천부 횡파속도($v_s$) 및 부지특성을 파악하기 위해 2013년 2월부터 2013년 9월 사이의 20일간 4.5 Hz 수직 지오폰 12 ~ 24개를 이용하여 원주시계 내의 78 지점에서 레일리파를 기록하였다. 레일리파 분산곡선은 확장된 공간자기상관함수법으로 구하였고, $v_s$를 구하기 위하여 감소최소자승법으로 역산하였다. 이들 1-D 모델로부터 구한 풍화암질 기반암의 깊이($D_b$), 기반암의 횡파속도($v_s^b$), 토양층의 평균 횡파속도($\bar{v}_s^s$), 30 m까지 평균 횡파속도($v_s30$)는 95% 신뢰구간에서 각각 $16.3{\pm}0.7m$, $576{\pm}8m/s$, $290{\pm}7m/s$, $418{\pm}13m/s$로 산출되었다. $v_s30$의 적절한 지시자를 결정하기 위해서 $v_s30$과 지표면 경사도(r = 0.46) 및 고도(r = 0.43)와의 상관계수를 계산하였고, 개별적으로 평가한 $v_s30$과의 상관성을 종합하여 지표면 경사도, 고도, 암상의 가중치를 각각 0.45, 0.45, 0.1으로 하는 선형 경험식을 제시하였다. 그러나 이 경험식과 역산으로 구한 $v_s30$의 상관성이 미약하여(r = 0.50), 적용시에는 상대적으로 큰 오차범위를 고려해야 할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.