• Title/Summary/Keyword: 자궁 경부 세포진

Search Result 40, Processing Time 0.029 seconds

A Study on Nucleus Recognition of Uterine Cervical Pap-Smears using Fuzzy c-Means Clustering Algorithm (퍼지 c-Means 클러스터링 알고리즘을 이용한 자궁 세포진 핵 인식에 관한 연구)

  • Heo, Jung-Min;Kim, Jung-Min;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.403-407
    • /
    • 2005
  • 자궁 경부 세포진 영상의 핵 영역 분할은 자궁 경부암 자동화 검색 시스템의 가장 어렵고도 중요한 분야로 알려져 있다. 본 논문에서는 자궁 경부 세포진 영상에서 HSI 모델을 이용하여 세포진 핵 영역을 추출한다. 추출된 세포진 핵 영역은 형태학적 정보(morphometric feature)와 명암 정보(densitometric feature), 색상 정보(colorimetric feature), 질감 정보(textural features)를 분석하여 핵의 특징을 추출한다. 또한 Bethesda System에서의 분류 기준에 따라 핵의 분류 기준을 정하고 추출된 핵의 특징들을 퍼지 c-Means 클러스터링 알고리즘에 적용하여 실험한 결과, 제안된 방법이 자궁 세포진 핵 추출과 인식에 있어서 효율적임을 확인하였다.

  • PDF

A Study on Detection of Carcinoma Cell of Uterine Cervical Using Marker Information and Directional Information (마커 정보와 방향성 정보를 이용한 자궁 경부진 암종세포 추출에 관한 연구)

  • Lee, Dong-gyun;Kim, Kwang-baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.364-368
    • /
    • 2009
  • 자궁경부암은 다른 암과 달리 전암(前癌) 단계가 존재하므로 조기에 발견할 경우 생존율이 높다. 그러나 검체 적정성의 부족과 검체 체취의 오류로 인해 질병이 있음에도 음성으로 나타나는 위음성률이 높다. 따라서 본 논문에서는 세포 도말검사에서 사용되는 자궁 경부진 세포에서 암종 세포를 추출하는 방법을 제안한다. 영상의 배경 그리고 핵과 세포질 영역의 구분이 중요하기 때문에 조기 자궁 경부 세포진 영상에서 핵의 추출은 Lighting Compensation을 적용하여 영상을 보정하고, 명암도 분포가 가장 작은 B 채널과 명암도 분포가 높은 R채널과의 OR 연산을 적용한 후, $3{\times}3$마스크를 이용하여 잡음을 제거한다. 잡음이 제거된 영상을 이진화하고 Grassfire 알고리즘을 이용하여 암종 세포의 후보 객체를 추출한다. 추출된 세포 객체에서 핵의 크기, 핵의 면적과 핵의 외곽의 방향성 정보를 이용하여 백혈구와 잡음으로 구성된 객체를 제거한다. 세포 도말검사 과정에서 겹쳐진 부분은 거리 함수와 명암도를 이용하여 마커를 추출하고 추출된 마커 정보와 워터쉐드 알고리즘을 적용하여 겹쳐진 암종 세포를 분리한다. 자궁경부 편평 세포진 400 배율 영상과 자궁 경부 상피내 종양 400 배율 영상을 대상으로 실험한 결과, 기존의 자궁 경부진 암종 세포 추출 방법보다 효과적으로 암종 세포 영역이 추출되는 것을 확인하였다.

  • PDF

Nucleus Segmentation and Recognition of Uterine Cervical Pap-Smears using Enhanced Fuzzy ART Algorithm (개선된 퍼지 ART 알고리즘을 이용한 자궁 경부 세포진 핵 분할 및 인식)

  • Kim, Kwang-Baek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.519-524
    • /
    • 2006
  • Segmentation for the region of nucleus in the image of uterine cervical cytodiagnosis is known as the most difficult and important part in the automatic cervical cancer recognition system. In this paper, the region of nucleus is extracted from an image of uterine cervical cytodiagnosis using the fuzzy grey morphology operation. The characteristics of the nucleus are extracted from the analysis of morphemetric features, densitometric features, colormetric features, and textural features based on the detected region of nucleus area. The classification criterion of a nucleus is defined according to the standard categories of the Bethesda system. The enhanced fuzzy ART algorithm is used to the extracted nucleus and the results show that the proposed method is efficient in nucleus recognition and uterine cervical Pap-Smears extraction.

Nucleus Segmentation and Recognition of Uterine Cervical Pop-Smears using Region Growing Technique and Backpropagation Algorithm (영역 확장 기법과 오류 역전파 알고리즘을 이용한 자궁경부 세포진 영역 분할 및 인식)

  • Heo Jung-Min;Kim Sung-Shin;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.335-339
    • /
    • 2006
  • 자궁 경부 세포진 영상의 핵 영역 분할은 자궁 경부암 자동화 검색 시스템의 가장 어렵고도 중요한 분야로 알려져 있다. 자궁 경부 세포진 영상은 배경과 세포의 영역이 확실히 구분되지 않는 경우가 많기 때문에 이들을 확실히 구분하는 것이 매우 중요하다. 본 논문에서는 이러한 문제점을 해결하기 위해 자궁 경부 세포진 영상에서 Region growing 기법을 적용하여 세포 영상을 분할한다. Region growing 기법은 화소간의 유사도를 측정하여 영역을 확장하여 분할하는 방법이다. 세포와 배경이 분할된 영상을 일정 임계값을 이용하여 영상을 이진화 한 후, 8방향 윤곽선 추적 알고리즘을 이용해 세포 영역을 추출한다. 추출된 세포 영역을 원 영상인 RGB 컬러로 변환한 후에 K-means 알고리즘을 적용하여 각 세포 영역의 RGB 화소를 R, G, B 채널로 각각 분리하여 클러스터링한다. 클러스터링된 각각의 R, G, B 채널의 클러스터 값을 이용하여 HSI 모델로 변환시킨 후에 세포핵 영역의 Hue 정보를 추출한다. 추출된 세포핵의 특징을 오류 역전파 알고리즘을 적용하여 정상 세포와 비정상 세포를 분류하고 인식한다.

  • PDF

Nucleus Recognition of Uterine Cervical Pap-Smears using Kapur Method and Fuzzy Reasoning Rule (Kapur 방법과 퍼지 추론 규칙을 이용한 자궁 경부진 핵 인식)

  • Kang, Kyoung-Min;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.241-247
    • /
    • 2007
  • 자궁 경부 세포진 영상의 핵 추출을 위해서는 영상의 배경과 핵 그리고 세포질 영역의 구분이 중요하다. 또한 정상 세포핵과 암종 세포핵의 구분 및 인식을 위해서는 세포핵들의 형태학적 특징을 이용한 분류 기준을 세워야한다. 본 논문에서는 자궁 경부 세포진 영상에서 세포핵의 후보 영역과 핵을 추출하기 위해 현미경 400배율 확대 사진을 획득하는 과정에서 훼손된 컬러 영상을 복원하기 위한 방법으로 Lighting Compensation을 적용하여 영상을 보정한다. 그리고 배경 영역과 세포핵 영역을 구분하기 위해 영상의 R,G,B 영역의 히스토그램의 분포를 이용하여 배경을 제거한다. 배경이 제거된 영상을 그레이 영상으로 변환 한 후, 히스토그램 명암도의 값을 이용하여 세포핵 영역과 세포질을 분류하여 세포핵 영역을 추출한다. 그리고 Kapur 방법을 적용하여 세포핵 영역의 엔트로피 누적확률을 구한 후, 영상을 이진화 한다. Kapur 방법이 적용된 이진화 영상에서 세포핵 영역의 중심과 주위 화소를 비교하는 $3\times3$ 마스크를 적용하여 영상의 미세한 잡음을 제거 한 후, 8방향 윤곽선 추적 알고리즘을 적용하여 최종적으로 세포핵 영역을 추출한다. 추출된 세포핵의 영역을 분류 및 인식하는 과정으로 세포의 외각의 방향성 정보, 핵의 크기, 그리고 면적 비율의 특징을 이용하여 퍼지 소속 함수를 설계한 후, 소속 함수의 소속도를 구하고 퍼지 추론 규칙을 적용하여 자궁 경부 세포진 영상에서 정상 세포핵 및 암종 세포핵을 인식한다.

  • PDF

Nucleus Segmentation and Recognition of Uterine Cervical Pop-Smears using Region Growing Technique and Backpropagation Algorithm (영역 확장 기법과 오류 역전파 알고리즘을 이용한 자궁경부 세포진 영역 분할 및 인식)

  • Kim Kwang-Baek;Kim Sung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.6
    • /
    • pp.1153-1158
    • /
    • 2006
  • The classification of the background and cell areas is very important research area because of the ambiguous boundary. In this paper, the region of cell is extracted from an image of uterine cervical cytodiagnosis using the region growing method that increases the region of interest based on similarity between pixels. Segmented image from background and cell areas is binarized using a threshold value. And then 8-directional tracking algorithm for contour lines is applied to extract the cell area. First, the extracted nucleus is transformed to RGB color that is the original image. Second, the K-means clustering algorithm is employed to classify RGB pixels to the R, G, and B channels, respectively. Third, the Hue information of nucleus is extracted from the HSI models that is the transformation of the clustering values in R, G, and B channels. The backpropagation algorithm is employed to classify and identify the normal or abnormal nucleus.

Detection and Recognition of Uterine Cervical Carcinoma Cells in Pap Smear Using Kapur Method and Morphological Features (Kapur 방법과 형태학적 특징을 이용한 자궁경부암 세포 추출 및 인식)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1992-1998
    • /
    • 2007
  • It is important to obtain conn cytodiagnosis to classify background, cytoplasm, and nucleus from the diagnostic image. This study mose an algorithm that detects and classifies carcinoma cells of the uterine cervix in Pap smear using features of cervical cancer. It applies Median filter and Gaussian filter to get noise-removed nucleus area and also applies Kapur method in binarization of the resultant image. We apply 8-directional contour tracking algorithm and stretching technique to identify and revise clustered cells that often hinder to obtain correct analysis. The resulted nucleus area has distinguishable features such as cell size, integration rate, and directional coefficient from normal cells so that we can detect and classify carcinoma cells successfully. The experiment results show that the performance of the algorithm is competitive with human expert.

Cervicography as a Screening Test for Cervical Cancer (자궁경부암 선별 검사에서 자궁경부 확대 촬영술의 이용)

  • Lee, Doo-Jin;Lee, Sung-Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.16 no.2
    • /
    • pp.169-180
    • /
    • 1999
  • Background: Uterine cervical cancer is the most common malignant tumor of the women in Korea. This study was undertaken to evaluate the usefulness of the cervicography as a screening test of cervical cancer. Materials and Methods: Cervicography was taken from 482 women at department of obstetrics and gynecology, at Yeungnam University Hospital from March 1, 1998 to October 31, 1999. Of the 482 women, 172 women were exc1uded from the study for various reasons, and 310 women completed the study. Three-hundred and ten women had cervical cytology (Papanicolaou smear), cervicography and colposcopy, and punch biopsy was undertaken if any of the test result was abnormal. Results: The most common age group was 35-39, and 40-44, 45-49 in order and most common reason for having a screening test was regular check for cervical cancer. The mean duration from the last Pap smear was 17.1 months, and 64 women(20.4%) never had any prior screening tests. Of the 310 women, 254 women were categorized as normal or having benign disease such as cervicitis, erosion or metaplasia. Biopsy was taken from 56 patients and the results were 26 chronic cervicitis, 4 mild dysplasia, 6 moderate dysplasia, 2 severe dysplasia, 14 carcinoma in situ and 4 invasive carcinoma. The results of cytology and cervicography were well correlated(p<0.05). The sensitivity and specificity of cytology were 86.7% and 76.9%, respectively and the sensitivity and specificity of cervicography were 56.7% and 96.2%, respectively. False negative rate of cervicography(43.3%) was much higher than those of cytology(13. 3%) (p<0.05), but false positive rate of cervicography(3.8%) was much lower than that of cytology(23.1%) (p<0.05). Conclusion: It seems inappropriate to use cervicography as a single screening test for cervival cancer, but it may be an effective complementary test for cytology to lower the false negative rate of cytology.

  • PDF

A Study on Nucleus Extraction of Uterine Cervical Pap-Smears (자궁 경부진 핵 추출에 관한 연구)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1699-1704
    • /
    • 2009
  • If detected early enough, cervical cantor may have a good survival rate due to its preneoplastic state. However, the process is so time consuming that a medical expert can handle only a small amount of such examinations. In this paper, we propose a new nucleus extraction algorithm for uterine cervical pap smears in order to mitigate such burdens of medical experts. In the preneoplastic state cytodiagnosis images, it is important to differentiate three main areas - background, cytoplasm and nucleus. Thus, we apply lighting compensation and $3{\times}3$ mask of B channel in order to restore damaged image and remove noises respectively. The cell object is obtained from those clean binarized images with Grossfire algorithm. When there are clusters of cells, the target nucleus can be obtained with repetitive binarization of R channel brightness. In our experiment of using uterine cervical pap smears of 400 magnifications that is common in the diagnostic cytology, our method is able to extract 40 nucleus out of 45 population successfully.

Recognition fo Cervical Cancer Cells Using Wavlelet Coefficient (Wavelet 계수를 이용한 자궁 경부 세포진 인식)

  • 윤혜경;김백섭
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.445-447
    • /
    • 2001
  • 본 논문에서는 세포 영상에 대해 Wavelet 계수을 이용한 인식 방법을 제안하고 있다. 자궁 경부세포진은 핵과 세포질을 분할하기 힘들기 때문에 영역분할을 통해 얻은 핵특징이 잘못 계산될 수 있어 인식율이 떨어진다. 따라서 핵의 세포만을 나타낼 수 있도록 핵의 정보를 포함하고 있는 고대역 부밴드에서는 20$\times$20 영상을 사용하였고, 세포질에 정보를 포함하고 있는 저대역 부밴드에서는 50$\times$50의 영상을 사용하였다. 영상 인식을 위한 특징 추출은 2단계 Wavelet 변환후 생성된 변환 영역에 대해서 Wavelet 계수 평균값 표준편차와 Energy를 사용하였다. 실험 결과 Wavelet 계수를 이용한 방법이 영역분할을 이용한 방법과 비교하여 더 높은 인식율 보였다.

  • PDF