• Title/Summary/Keyword: 자가포식

Search Result 46, Processing Time 0.028 seconds

Betaine Induces Epidermal Differentiation by Enhancement of Autophagy through an mTOR-independent Pathway (Betaine의 mTOR 비의존적 자가포식 작용 촉진에 의한 표피 분화 유도 효과)

  • Choi, Seon-Guk;Kim, Mi-Sun;Kim, Jin-Hyun;Park, Sun Gyoo;Lee, Cheon Koo;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.95-101
    • /
    • 2018
  • The epidermis which is stratified by epithelial tissue renewal based on keratinocyte differentiation protects the organism from various environmental insults by forming a physical barrier. Autophagy is a mechanism which mediates lysosomal delivery and degradation of protein aggregates, damaged organelles and intracellular microorganisms. Recent reports have shown that autophagy has critical roles for proper terminal differentiation to stratum corneum via removing metabolic organelles and nuclei. However, whether increasing autophagy can activate epidermal differentiation is unknown. Here, we screened a library of natural single compounds and discovered that betaine specifically increased the LC3 positive cytosolic punctate vesicles and LC3-I to LC3-II conversion in HaCaT human keratinocyte cell line, indicating increased autophagy flux. mTOR pathway, which negatively regulates autophagy, was not affected by betaine treatment, suggesting betaine-induced autophagy through an mTOR-independent pathway. Betaine-induced autophagy was also observed in primary human keratinocyte and skin equivalent. Furthermore, epidermal thickness was increased in skin equivalent under betaine treatment. Overall, our finding suggests that betaine as a novel regulator of autophagy may induce epidermal turnover and improve the skin barrier abnormality of the aged epidermis.

Ultrastructural analysis and quantification of autophagic vacuoles in wild-type and atg5 knockout mouse embryonic fibroblast cells (정상 및 atg5 유전자 제거 섬유아세포에서 자가포식체의 미세구조 및 이들의 정량적 분석)

  • Choi, Suin;Jeon, Pureum;Huh, Yang Hoon;Lee, Jin-A
    • Analytical Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.208-218
    • /
    • 2018
  • Autophagy is a cellular process whereby cytosolic materials or organelles are taken up in a double-membrane vesicle structure known as an autophagosome and transported into a lysosome for degradation. Although autophagy has been studied at the genetic, cellular, or biochemical level, systematic ultrastructural quantitative analysis of autophagosomes during the autophagy process by using transmission electron microscopy (TEM) has not yet been reported. In this study, we performed ultrastructural analysis of autophagosomes in wild-type (WT) mouse embryonic fibroblasts (MEFs) and autophagy essential gene (atg5) knockout (KO) MEFs. First, we performed ultrastructural analysis of autophagosomes in WT MEFs compared to atg5 KO MEFs in basal autophagy or starvation-induced autophagy. Although we observed phagopore, early, late autophagosomes, or autolysosomes in WT MEFs, atg5 KO MEFs had immature autophagosomes that showed incomplete closure. Upon starvation, late autophagosomes accumulated in WT MEFs while the number of immature autophagosomes significantly increased in atg5 KO MEF indicating that atg5 plays an important role in the maturation of autophagosomes. Next, we examined autophagosomes in the cell model expressing polyQ-expanded N-terminal fragment of huntingtin. Our TEM analysis indicates that the number of late autophagosomes was significantly increased in the cells expressing the mutant huntingtin, indicating that improving the fusion of autophagosome with lysosome may be effective to enhance autophagy for the treatment of Huntington's disease. Taken together, the results of our study indicate that ultrastructural and quantitative analysis of autophagosomes using TEM can be applied to various human cellular disease models, and that they will provide an important insight for cellular pathogenesis of human diseases associated with autophagy.

Induced Autophagy Regulates Salmonella enterica serovar Typhimurium Infection in Murine Macrophage (쥐의 큰포식세포주에서 자가포식현상에 의한 Salmonella enterica serovar Typhimurium의 감염 조절)

  • Lee, Sunhye;Kim, Ju-Young;Lee, Hyo-Ji;Jung, Yu-Jin
    • Korean Journal of Microbiology
    • /
    • v.50 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • Autophagy is one of the lysosomal degradation pathways to maintain cellular homeostasis. The damaged proteins or organelles are uptaken through extra- and intra-cellular stress, starvation and infected pathogens, subsequently, autophagosomes are fused with lysosomes to break down the molecules. Salmonella enterica serovar Typhimurium (S. Typhimurium), intracellular bacteria, cause acute gastroenteritis and food poisoning. Given that autophagy induced by S. Typhimurium plays an important role in the cells to control the infection, we identify whether the induction of autophagy with rapamycin, chemical inducer of autophagy, before infection regulates S. Typhimurium infection. After treatment of rapamycin or 3-methyladenine (3-MA), autophagy inhibitor, RAW264.7 cells were infected with S. Typhimurium. Pretretment of rapamycin decreased the growth rate of S. Typhimurium in the cells; otherwise, pretreatment of 3-MA increased the growth rate of S. Typhimurium. The expression of autophagy-related genes was significantly increased in the S. Typhimurium-infected cells pretreated with rapamycin. To examine whether induced autophagy by rapamycin control the infection with increase the production of reactive oxygen species (ROS) and nitric oxide (NO), antibacterial radical substrates were measured in infected cells followed by the treatment with either rapamycin or 3-MA. NO production increased in RAW264.7 cells; otherwise, ROS production remained unchanged during the infection. These findings suggest that inducing autophagy with rapamycin reveals antimicrobial activity as producing NO against S. Typhimurium infection in mouse macrophages.

Differential Effects of Acute and Chronic Exercise on Autophagy-related Gene Expression in Drosophila melanogaster (일회성 및 만성적 유산소운동이 초파리의 자가포식 관련 유전자 발현에 미치는 영향)

  • Kim, Hee Yeon;Kim, Hye Jin;Hwang, Ji Sun;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1180-1186
    • /
    • 2014
  • Autophagy, the lysosomal degradation pathway, is an intracellular recycling system that is necessary for the metabolic benefits of exercise and for producing lasting beneficial effects of exercise in various diseases. However, the most recent studies have only examined the effect of a single bout of exercise or resistance exercise on autophagic responses. To determine the differential effects of acute and chronic exercise on the expression of autophagy-related genes in D. melanogaster, white-eyed mutant D. melanogaster were assigned randomly to four groups: control, acute exercise, 2 hr chronic exercise, and 3 hr chronic exercise. The flies were exercised using a mechanized platform known as the Power Tower. Our results revealed that a single bout of exercise resulted in increased mRNA levels of the Atg8a gene (~20%, p<0.05). However, Atg1 and Atg6 mRNA expression were not induced by acute exercise. Transcript levels of Atg6 (~29%, p<0.05) related to the nucleation of autophagosomes were significantly induced by 2 hr of chronic exercise. However, this chronic exercise was not enough to increase Atg1 and Atg8a mRNA expression. On the other hand, 3 hr of exercise for 7 days significantly increased Atg1, Atg6, and Atg8a gene expression-about 57%, 37%, and 71%, respectively (p<0.05). These results suggest that a single bout of exercise is not enough to induce full activation of selected autophagy-related genes in D. melanogaster. Our results demonstrated that chronic regular exercise induced autophagy-related gene expression, suggesting that chronic regular exercise training might be required to activate autophagic responses important for producing beneficial effects of exercise in various diseases.

Effect of treadmill exercise on autophagy related protein expression in the cardiac muscle of high-fat diet fed rats (트레드밀 운동이 고지방 식이 쥐 심근세포의 자가포식 관련 단백질 발현에 미치는 영향)

  • Jeong, Jae-Hoon;Kang, Eun-Bum
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.91-101
    • /
    • 2020
  • The purpose of this study was to investigate the influence of obesity on the expression of autophagy-related proteins in cardiac muscle. To this end, obesity was induced in rats through 20 weeks of high-fat diet, and the animals were then subjected to 8 weeks of treadmill exercise. Subsequently, the expression of proteins that regulate the induction of autophagy, formation of autophagosome, and fusion of autophagosome and lysosome was confirmed. Obesity was induced in the experimental animals (SD rats) through 20 weeks of high-fat diet (carbohydrate: 20%, fat: 60%, and protein: 20%), and they were subsequently subjected to 8 weeks of treadmill exercise (5 days/week, 30 min/day, 5 minutes; 8m/min, 5 minutes; 11m/min, 20 minutes; 14m/min). The experimental groups comprised the normal diet control group (ND-CON, n=10), high-fat diet comparison group (HFD-CON, n=10), and high-fat exercise group (HFD-TE, n=10). Oral glucose tolerance test was conducted before and after 8 weeks of treadmill exercise, and the area under the curve (AUC) was calculated. Through fasting insulin and fasting glucose levels, HOMA-IR, which is an index of insulin resistance, and abdominal visceral fat/body weight (AVF/BW) were calculated for comparison. Moreover, autophagy-related proteins were analyzed from cardiac tissue to investigate the effects of exercise training. Obesity was successfully induced in the HFD-CON group through long-term high-fat diet, and the HFD-CON group had higher body weight, AUC, HOMA-IR, and AVF/BW compared to the ND-CON group. The HFD-TE group, which underwent 8 weeks of treadmill exercise, showed improvements in AUC, HOMA-IR, and AVF/BW. Although the body weight tended to decrease as well, there was no statistically significant difference. mTOR and AMPK, which are involved in the induction of autophagy, both decreased in obesity but increased upon exercise. Beclin-1, BNIP3, ATG-7, p62, and LC3, which are related to the formation of autophagosomes, all increased in obesity and decreased after exercise. Cathepsin L and LAMP2, which regulate the fusion of autophagosome and lysosome, both decreased in obesity and increased upon exercise. Physical activity, including treadmill exercise, was found to induce normal autophagy and improve pathological phenomena observed in metabolic diseases. Therefore, the findings suggest the need to consider treadmill exercise as a primary means to achieve effective prevention and treatment of cardiac diseases.

The Induction of ROS-dependent Autophagy by Particulate Matter 2.5 and Hydrogen Peroxide in Human Lung Epithelial A549 Cells (미세먼지와 산화적 스트레스에 의한 인간 폐 상피 A549 세포에의 ROS 의존적 자가포식 유도)

  • Park, Beom Su;Kim, Da Hye;Hwangbo, Hyun;Lee, Hyesook;Hong, Su Hyun;Cheong, Jaehun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.310-317
    • /
    • 2022
  • Recently, interest in the harmful factors of particulate matter (PM), a major component of air pollution, has been increasing. In particular, PM2.5 with a diameter of less than 2.5 ㎛ is well known to induce oxidative stress accompanied by autophagy in human lung epithelial cells. However, studies on whether PM2.5 increases autophagy under oxidative stress and whether this process is reactive oxygen species (ROS)-dependent are insufficient. Therefore, in this study, we investigated whether PM2.5 promotes autophagy through the generation of ROS in human alveolar epithelial A594 cells. According to our results, cells co-treated with PM2.5 and hydrogen peroxide (H2O2) showed a lower cell viability than cells treated with each alone, which was associated with increased total and mitochondrial ROS production. The co-treatment of PM2.5 and H2O2 also increased autophagy induction, which was confirmed through Cyto-ID staining, and the expression of autophagy biomarker proteins increased. However, when ROS generation was artificially blocked by N-acetyl-L-cysteine pretreatment, the reduction in cell viability and induction of autophagy by PM2.5 and H2O2 co-treatment were markedly attenuated. Therefore, the present results suggest that PM2.5-induced ROS generation may play a critical role in autophagy induction in A549 cells.

Induction of Autophagy by Paeonia lactiflora Root Extracts through Upregulation p62/SQSTM1 in RAW264.7 Cells (작약(Paeonia lactiflora) 뿌리 추출물의 대식세포에서 p62/SQSTM1 증가를 통한 자가포식 유도)

  • Jin Boo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.36 no.4
    • /
    • pp.275-281
    • /
    • 2023
  • Autophagy contributes to enhancing the immune system (innate and adaptive immune system) against foreign pathogens. Autophagy of macrophages is used as a major indicator for developing vaccine adjuvants to increase the adaptive immune response. In this study, PLR activated autophagy and increased p62/SQSTM1. The knockdown of p62/SQSTM1 attenuated PLR-mediated autophagy. Inhibition of TLR4 blocked PLR-mediated increase in p62/SQSTM1 level and autophagy induction. In addition, inhibition of PI3K blocked HSL-mediated increase of p62/SQSTM1. PLR increased Nrf2 level and the inhibition of TLR4 and PI3K reduced PLR-mediated increase of Nrf2. Taken together, it is believed that PLR may induce autophagy through upregulating p62/SQSTM1 via TLR4/PI3K/Nrf2 signaling pathway.

Effects of resveratrol on hepatic autophagy in high fat diet-induced obese mice (고지방식이로 유도한 비만 쥐에서 레스베라트롤이 자가포식에 미치는 영향)

  • Lee, Hee Jae;Yang, Soo Jin
    • Journal of Nutrition and Health
    • /
    • v.46 no.4
    • /
    • pp.307-314
    • /
    • 2013
  • Resveratrol (RSV) exerts several beneficial effects on metabolism and metaflammation-related diseases, including diabetes and non-alcoholic fatty liver disease (NAFLD). The purpose of this study is to investigate whether RSV affects pathophysiology of diabetes and NAFLD as well as hepatic autophagy in a rodent model of diet induced obesity (DIO). DIO was induced in a subset of C57BL/6J mice fed a high fat (HF, 45% kcal fat) diet. After six weeks of HF diet treatment, RSV (8 mg/kg/day) was administered via an osmotic pump for a period of four weeks. Therefore, the experimental groups were as follows: 1) lean control (CON), 2) HF diet-induced obese control (HF), and 3) HF_RSV. Body weight and food intake were monitored daily. Fasting glucose, insulin, and adiponectin in serum and lipid profiles in serum and liver were analyzed. In addition, the autophagic process was investigated using transmission electron microscopy (TEM). Body weight and food intake were not affected by RSV treatment. Impaired glucose control accompanied by DIO was recovered with RSV as shown by lower levels of fasting serum glucose and insulin when compared with HF obese controls. In addition, RSV treatment resulted in increased levels of serum adiponectin, however, indices of lipid profile in serum and livers were reduced. Results of TEM analysis showed that a HF diet induced excessive autophagy with the presence of double-membrane autophagosomes, which was ameliorated by RSV. The regulatory effect of RSV on autophagy was confirmed by the altered LC3-II formation, which increased with a HF diet and was decreased by RSV treatment. These results suggest that RSV treatment improves glucose control and lipid profile and these beneficial effects may be mediated by an altered autophagic process.

A Study on Melanin Reduction through Autophagy by 2'-Fucosyllactose (2'-푸코실락토오스의 자가포식을 통한 멜라닌 감소 연구)

  • Jung, So Young;Yoo, Han Jun;Heo, Hyojin;Lee, So Min;Brito, Sofia;Cha, Byungsun;Lei, Lei;Lee, Sang Hun;Bin, Bum-Ho;Lee, Mi-Gi;Kwak, Byeong-Mun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.2
    • /
    • pp.105-112
    • /
    • 2022
  • 2'-fucosyllactose (2'-FL) is the most abundant human milk oligosaccharide (HMO) present in breast milk, promoting the growth of beneficial microorganisms in the gut and aiding in the relief of allergic and inflammatory reactions. In this study, the anti-melanogenic effects of 2'-FL, and its potential for application in whitening cosmetics, were evaluated. MTT assay was performed on MNT-1 cells, human-derived melanocytes. 2'-FL was treated and replaced at 48 h intervals for 7 days, and it was confirmed that there was no cytotoxicity at 20 g/L or less, while a 40% reduction in melanin production was also observed. Western blot analysis of TYR and TYRP1, factors involved in melanogenesis, revealed that 2'-FL treatment reduced their expression levels. In addition, 2'-FL application and observation of the autophagy marker microtubule-associated protein 1 light chain 3 (LC3) revealed it was converted from LC3-I to LC3-𝚷, indicating increased autophagy. Likewise, confocal microscopy revealed an increase in LC3 puncta after 2'-FL treatment. Therefore, it is suggested that 2'-FL-mediated activation of autophagy reduces melanogenesis by inhibiting the expression levels of TYR and TYRP1 proteins. In conclusion, it has been confirmed that 2'-FL induces autophagy and suppresses melanin production, so its potential as a whitening cosmetic material is expected.

Induction of Autophagy by Rosa acicularis Leaves Extracts in RAW264.7 Cells (인가목(Rosa acicularis Lindl.) 잎 추출물의 대식세포에서 자가포식 유도활성)

  • Jeong Won Choi;Jin Boo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.36 no.4
    • /
    • pp.257-263
    • /
    • 2023
  • Autophagy contributes to enhancing the immune system (innate and adaptive immune system) against foreign pathogens. Autophagy of macrophages is used as a major indicator for developing vaccine adjuvants to increase the adaptive immune response. In this study, water extracts from Rosa acicularis leaves (RAL) increased the production of immunostimulatory mediators and phagocytic activity in RAW264.7 cells. RAL increased p62/SQSTM1 expression. Inhibition of TLR4, JNK, and PI3K/AKT blocked RAL-mediated increase of p62/SQSTM1. RAL activated JNK and PI3K/AKT signaling. RAL-mediated activations of JNK and PI3K/AKT signaling were reversed by TLR4 inhibition. Taken together, it is believed that RAL-mediated autophagy may be dependent on activating via TLR4-dependent activation of JNK and PI3K/AKT signaling in macrophages.