• 제목/요약/키워드: 잎사귀 질병

검색결과 3건 처리시간 0.017초

잎사귀 영상처리기반 질병 감지 알고리즘 (Disease Detection Algorithm Based on Image Processing of Crops Leaf)

  • 박정현;이성근;고진광
    • 한국빅데이터학회지
    • /
    • 제1권1호
    • /
    • pp.19-22
    • /
    • 2016
  • 최근 IT 기술을 활용하여 농작물의 병충해 조기 진단에 관한 연구가 활발히 진행되고 있다. 본 논문은 카메라 센서를 통해 받아온 작물의 잎사귀 이미지를 분석하여 병충해를 조기에 감지할 수 있는 이미지 프로세싱 기법에 대해 논한다. 본 논문은 개선된 K 평균 클러스터링 방법을 활용하여 잎사귀 질병 감염 여부를 진단하는 알고리즘을 제안한다. 잎사귀 감염 분류 실험을 통해, 제안한 알고리즘이 정성적인 평가에서 더 좋은 성능을 나타낸 것으로 분석되었다.

  • PDF

토마토 잎사귀 질병 감지를 위한 이미지 처리 메커니즘 (An Image Processing Mechanism for Disease Detection in Tomato Leaf)

  • 박정현;이성근
    • 한국전자통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.959-968
    • /
    • 2019
  • 농업 분야에서 여러 가지 센서들과 임베디드 시스템을 활용하여 한 무선 센서 네트워크 기술이 적용되고 있는 추세이다. 특히, 센서 네트워크를 활용하여 작물의 질병을 조기에 진단할 수 있는 많은 연구가 진행되고 있다. 기존 병충해 진단 연구들은 실제 농가에 적용하기 어려운 부분이 존재한다. 본 논문은 이를 개선하고자 하였으며, 화상카메라를 통해 받아온 작물의 잎사귀 이미지를 분석하여 병충해를 초기에 감지 가능한 알고리즘을 제안한다. 실제 시설원예 및 노지 환경 농가의 캡쳐한 이미지 내에서 감염 의심 영역을 개선된 K 평균 클러스터링 기법을 통해 분류하였다. 그 후 엣지 검출, 엣지 추적 기법을 활용하여 해당 영역의 잎사귀 내부 존재 여부를 확인하였다. 인근 농가에서 촬영한 토마토 잎사귀 이미지를 이용하여 성능 평가를 수행하였다. 기존 논문의 방법 보다 제안 알고리즘의 감영 영역 분류 능력이 우수한 것으로 나타났다.

VGG16을 활용한 미학습 농작물의 효율적인 질병 진단 모델 (An Efficient Disease Inspection Model for Untrained Crops Using VGG16)

  • 정석봉;윤협상
    • 한국시뮬레이션학회논문지
    • /
    • 제29권4호
    • /
    • pp.1-7
    • /
    • 2020
  • 농작물 질병에 대한 조기 진단은 질병의 확산을 억제하고 농업 생산성을 증대하는 데에 있어 중요한 역할을 하고 있다. 최근 합성곱신경망(convolutional neural network, CNN)과 같은 딥러닝 기법을 활용하여 농작물 잎사귀 이미지 데이터세트를 분석하여 농작물 질병을 진단하는 다수의 연구가 진행되었다. 이와 같은 연구를 통해 농작물 질병을 90% 이상의 정확도로 분류할 수 있지만, 사전 학습된 농작물 질병 외에는 진단할 수 없다는 한계를 갖는다. 본 연구에서는 미학습 농작물에 대해 효율적으로 질병 여부를 진단하는 모델을 제안한다. 이를 위해, 먼저 VGG16을 활용한 농작물 질병 분류기(CDC)를 구축하고 PlantVillage 데이터세트을 통해 학습하였다. 이어 미학습 농작물의 질병 진단이 가능하도록 수정된 질병 분류기(mCDC)의 구축방안을 제안하였다. 실험을 통해 본 연구에서 제안한 수정된 질병 분류기(mCDC)가 미학습 농작물의 질병진단에 대해 기존 질병 분류기(CDC)보다 높은 성능을 보임을 확인하였다.