• Title/Summary/Keyword: 입체조형

Search Result 181, Processing Time 0.024 seconds

광조형물의 변형모사에 관한 연구

  • 이정현;윤재륜
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.106-110
    • /
    • 1992
  • 컴퓨터에 의한 입체 형상 이용 기술의 발달로 3차원 CAD 데이타 형상의 제품을 2차원 형상의 층으로 연속적으로 적층 하는 입체인쇄(Stereolithography)기술개발이 활발하게 이뤄지고 있어 부품설계와 생산에 혁신을 예고하고 있으며, 이 같은 입체 인쇄 기술 중에서 특히, 특정 주파수의 빛에 의하여 경화되는 광 경화성수지(Photopolymer)에 레이저(Laser)를 주사하면 표면의 미소경화부만 경화되는 성질을 이용하여 소재를 경화시키는 광 조형법리 각광을 받고 있다. 본 논문에서는 광조형법에 의한 모델성형시 레이저빔의 조사에 의하여 야기되는 광경화성 수지의 상변화에 의한 성형물의 수축 및 뒤틀림에 대한 연구를 수행하였다

Dose Planning of Forward Intensity Modulated Radiation Therapy for Nasopharyngeal Cancer using Compensating Filters (보상여과판을 이용한 비인강암의 전방위 강도변조 방사선치료계획)

  • Chu Sung Sil;Lee Sang-wook;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • Purpose : To improve the local control of patients with nasopharyngeal cancer, we have implemented 3-D conformal radiotherapy and forward intensity modulated radiation therapy (IMRT) to used of compensating filters. Three dimension conformal radiotherapy with intensity modulation is a new modality for cancer treatments. We designed 3-D treatment planning with 3-D RTP (radiation treatment planning system) and evaluation dose distribution with tumor control probability (TCP) and normal tissue complication probability (NTCP). Material and Methods : We have developed a treatment plan consisting four intensity modulated photon fields that are delivered through the compensating tilters and block transmission for critical organs. We get a full size CT imaging including head and neck as 3 mm slices, and delineating PTV (planning target volume) and surrounding critical organs, and reconstructed 3D imaging on the computer windows. In the planning stage, the planner specifies the number of beams and their directions including non-coplanar, and the prescribed doses for the target volume and the permissible dose of normal organs and the overlap regions. We designed compensating filter according to tissue deficit and PTV volume shape also dose weighting for each field to obtain adequate dose distribution, and shielding blocks weighting for transmission. Therapeutic gains were evaluated by numerical equation of tumor control probability and normal tissue complication probability. The TCP and NTCP by DVH (dose volume histogram) were compared with the 3-D conformal radiotherapy and forward intensity modulated conformal radiotherapy by compensator and blocks weighting. Optimization for the weight distribution was peformed iteration with initial guess weight or the even weight distribution. The TCP and NTCP by DVH were compared with the 3-D conformal radiotherapy and intensitiy modulated conformal radiotherapy by compensator and blocks weighting. Results : Using a four field IMRT plan, we have customized dose distribution to conform and deliver sufficient dose to the PTV. In addition, in the overlap regions between the PTV and the normal organs (spinal cord, salivary grand, pituitary, optic nerves), the dose is kept within the tolerance of the respective organs. We evaluated to obtain sufficient TCP value and acceptable NTCP using compensating filters. Quality assurance checks show acceptable agreement between the planned and the implemented MLC(multi-leaf collimator). Conclusion : IMRT provides a powerful and efficient solution for complex planning problems where the surrounding normal tissues place severe constraints on the prescription dose. The intensity modulated fields can be efficaciously and accurately delivered using compensating filters.

  • PDF

Comparative Study Between Respiratory Gated Conventional 2-D Plan and 3-D Conformal Plan for Predicting Radiation Hepatitis (간암에서 호흡주기를 고려한 2-차원 방사선 치료 방법과 3-차원 입체조형 치료방법에서 방사선 간염 예측의 비교연구)

  • Lee Sang-wook;Kim Gwi Eon;Chung Kap Soo;Lee Chang Geol;Seong Jinsil;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.455-467
    • /
    • 1998
  • Purpose : To evaluate influences associated with radiation treatment planning obtained with the patient breathing freely. Materials and Methods : We compared reduction or elimination of planning target volume (PTV) margins with 2-D conventional plan with inclusion of PTV margins associated with breathing with 3-D conformal therapy. The respiratory non gated 3-D conformal treatment plans were compared with respiratory gated conventional 2-D plans in 4 patients with hepatocellular carcinomas. Isodose distribution, dose statistics, and dose volume histogram (DVH) of PTVs were used to evaluate differences between respiratory gated conventional 2-D plans and respiratory non gated 3-D conformal treatment plans. In addition. the risk of radiation exposure of surrounding normal liver and organs are evaluated by means of DVH and normal tissue complication probabilities (NTCPs). Results : The vertical movement of liver ranged 2-3 cm in all patients. We found no difference between respiratory gated 2-D plans and 3-D conformal treatment plans with the patients breathing freely. Treatment planning using DVH analysis of PTV and the normal liver was used for all patients. DVH and calculated NTCP showed no difference in respiratory gated 2-D plans and respiratory non gated 3-D conformal treatment plans. Conclusion : Respiratory gated radiation therapy was very important in hepatic tumors because radiation induced hepatitis was dependent on remaining normal liver volume. Further investigational studies for respiratory gated radiation.

  • PDF

Clinical Application Analysis of 3D-CRT Methods Using Tomotherapy (토모테라피를 이용한 3차원 입체 조형 치료의 임상적 적용 분석)

  • Cho, Kang-Chul;Kim, Joo-Ho;Kim, Hun-Kyum;Ahn, Seung-Kwon;Lee, Sang-Kyoo;Yoon, Jong-Won;Cho, Jeong-Hee;Lee, Jong-Seok;Yoo, Beong-Gyu
    • Journal of radiological science and technology
    • /
    • v.36 no.4
    • /
    • pp.327-335
    • /
    • 2013
  • This study investigates the case of clinical application for TomoDirect 3D-CRT(TD-3D) and TomoHelical 3D-CRT(TH-3D) with evaluating dose distribution for clinical application in each case. Treatment plans were created for 8 patients who had 3 dimensional conformal radiation therapy using TD-3D and TH-3D mode. Each patients were treated for sarcoma, CSI(craniospinal irradiaion), breast, brain, pancreas, spine metastasis, SVC syndrome and esophagus. DVH(dose volume histogram) and isodose curve were used for comparison of each treatment modality. TD-3D shows better dose distribution over the irradiation field without junction effect because TD-3D was not influenced by target length for sarcoma and CSI case. In breast case, dosimetric results of CTV, the average value of D 99%, D 95% were $49.2{\pm}0.4$ Gy, $49.9{\pm}0.4$ Gy and V 105%, V 110% were 0%, respectively. TH-3D with the dosimetric block decreased dose of normal organ in brain, pancreas, spine metastasis case. SCV syndrome also effectively decreased dose of normal organ by using dose block to the critical organs(spinal cord <38 Gy). TH-3D combined with other treatment modalities was possible to boost irradiation and was total dose was reduced to spinal cord in esophagus case(spinal cord <45 Gy, lung V 20 <20%). 3D-CRT using Tomotherapy could overcomes some dosimetric limitations, when we faced Conventional Linac based CRT and shows clinically proper dose distribution. In conclusion, 3D-CRT using Tomotherapy will be one of the effective 3D-CRT techniques.

3-D Conformal Radiotherapy for CNS Using CT Simulation (입체조준장치를 이용한 중추신경계의 방사선 입체조형치료 계획)

  • 추성실;조광환;이창걸
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • Purpose : A new virtual simulation technique for craniospinal irradiation (CSI) that uses a CT-simulator was developed to improve the accuracy of field and shielding placement as well as patient positioning. Materials and Methods : A CT simulator (CT-SIM) and a 3-D conformal radiation treatment planning system (3D-CRT) were used to develop CSI. The head and neck were immobilized with a thermoplastic mask while the rest of the body was immobilized with a Vac-Loc. A volumetric image was then obtained with the CT simulator. In order to improve the reproducibility of the setup, datum lines and points were marked on the head and body. Virtual fluoroscopy was performed with the removal of visual obstacles, such as the treatment table or immobilization devices. After virtual simulation, the treatment isocenters of each field were marked on the body and on the immobilization devices at the conventional simulation room. Each treatment fields was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR) and digitally composited radiography (DCR) images from virtual simulation. Port verification films from the first treatment were also compared with the DRR/DCR images for geometric verification. Results : We successfully performed virtual simulations on 11 CSI patients by CT-SIM. It took less than 20 minutes to affix the immobilization devices and to obtain the volumetric images of the entire body. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with simulation films to within 5 mm. This not only reducee inconveniences to the patients, but also eliminated position-shift variables attendant during the long conventional simulation process. In addition, by obtaining CT volumetric image, critical organs, such as the eyes and the spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. Differences between the DRRs and the portal films were less than 3 m in the vertebral contour. Conclusion : Our analysis showed that CT simulation of craniospinal fields was accurate. In addition, CT simulation reduced the duration of the patient's immobility. During the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization by standard protocol for craniospinal irradiation.

  • PDF

Quantitative Analysis of 3D-CRT Radiotherapy Planning Factors with or without IR in Patients with High Density Artifacts (고밀도 인공물 환자에서 반복적 재구성 사용 유무에 따른 3차원 입체조형 방사선 치료 계획 인자의 정량분석)

  • Lee, Gyu-Wook;Choi, U-Hyeong;Jung, Yae-Hyun;Lee, Joo-Hee;Yun, In-Ha;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.7-14
    • /
    • 2020
  • The purpose of this study is to assess the usefulness of IR to compensate for uncertainties in inserting high density artificial objects in radiation treatment planning in the 3D-CRT treatment technique. CT images of the subjects with phantom and titanium inserted were obtained from images without IR and images with IR, and the dose evaluation factors HI, MU and volume evaluation factors Volume and PCI were compared. The results of the stainless steel and titanium phantom experiments showed that the volume of high density artificial material was reduced by 4.850% and 11.456% respectively when applying IR. MU decreased 0.924% and 1.181%. HI was down 0.106% and 0.272%. PCI decreased 0.358% and 0.867%. When IR was applied to CT images of subjects with vertebroplasty, Femur alignment pin and wrist alignment pin, the volume of artifacts decreased by 47.76%, 23.841%, and 49.339%. MU also decreased 0.924%, 0.294% and 1.675%, while HI decreased 1.232%, 0.412% and 1.695%. PCI decreases 4.022%, 0.512%, and 13.472%. In conclusion, When IR was applied to 3D-CRT treatment plan, both dose and volume in phantom and subject case with high density artificial insert were reduced.

Study on Tumor Control Probability and Normal Tissue Complication Probability in 3D Conformal Radiotherapy (방사선 입체조형치료에 대한 종양치유확율과 정상조직손상확율에 관한 연구)

  • 추성실
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.227-245
    • /
    • 1998
  • A most appropriate model of 3-D conformal radiotherapy has been induced by clinical evaluation and animal study, and therapeutic gains were evaluated by numerical equation of tumor control probability(TCP) and normal tissue complication probability (NTCP). The radiation dose to the tumor and the adjacent normal organs was accurately evaluated and compared using the dose volume histogram(DVH). The TCP and NTCP was derived from the distribution of given dosage and irradiated volume, and these numbers were used as the biological index for the assessment of the treatment effects. Ten patients with liver disease have been evaluated and 3 dogs were sacrificed for this study. Based on the 3-D images of the tumor and adjacent organs, the optimum radiation dose and the projection direction which could maximize the radiation effect while minimizing the effects to the adjacent organs could be decided. 3). The most effective collimation for the normal adjacent organs was made through the beams eye view with the use of multileaf collimator. When the dose was increased from 50Gy to 70Gy, the TCP for the conventional 2-port radiation and the 5-port multidimensional therapy was 0.982 and 0.995 respectively, while the NTCP was 0.725 and 0.142 respectively, suggesting that the 3-D conformal radiotherapy might be the appropriate therapy to apply sufficient radiation dose to the tumor while minimizing the damages to the normal areas of the liver. Positive correlation was observed between the NTCP and the actual complication of the normal liver in the animal study. The present study suggest that the use of 3-D conformal radiotherapy and the application of the mathematical models of TCP and NTCP may provide the improvements in the treatment of hepatoma with enhanced results.

  • PDF

Evaluation of Treatment Planning for Head Tilting in WBRT 3D-CRT by TomoDirect mode: a Phantom Study (토모다이렉트를 이용한 3차원 전뇌 방사선치료에서 두상 각도에 따른 치료계획평가: 팬톰 실험)

  • Dae-Gun, Kim;Sang-Hyun, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.857-862
    • /
    • 2022
  • The purpose of this study was to evaluate a three-dimensional conformal radiotherapy (3D-CRT) treatment plan with regard to head tilting in whole-brain radiotherapy (WBRT) using TomoDirect (TD) mode in Tomotherapy. WBRT 3D-CRT by TD was compared for a total of five head tilt angles (-20°, -10°, 0°. +10° and +20°). The dose homogeneity index (HI) and prescription dose index (CI) were calculated to confirm the target coverage. The maximum and average doses for critical organs such as the lens, eyeball and parotid glands were calculated for different angles of head tilting. The HI and CI were closet to the result value of 1 at the head tilted angle +10° and +20°. At a head tilted angle of +10°, the dose to the lens and eyeballs decreased by about 74% and about 30%, when compared with the reference angle (0°), respectively. The results of this study suggest that a head angle of +10 with chin-up would save adequate target coverage and reduce exposure dose to the lens.

Design Study of 3D printing Form Liner for Aesthetic and Protective Concrete Surfacing (콘크리트 미관창출과 열화저감을 위한 3D프린팅 폼라이너 디자인 연구)

  • Jang, Jungsik;Hwang, Ga Yeong;Youn, Mun Ku;Jang, Jin Wha;Cheon, Soo Gyeong
    • Design Convergence Study
    • /
    • v.16 no.1
    • /
    • pp.97-109
    • /
    • 2017
  • Interest in the exterior design of buildings has increased in recent years. Demand for various architectural structures is increasing. However, domestic form liner and design are still limited. Thus, this research uses 3D printers to omit the existing mold production process. Use digital data to produce products economically using various materials. It can be hoped that extending the lifespan of the concrete structure will reduce the cost of saving costs. The purpose of this study is to utilize the 3D printers to develop the design of a suitable formative shape for the purposes of the concrete. In this study, 3D printed form enables the possibility that the actual application is practical. Consideration for the artistic design of the art line was proposed for the purpose of considering the use of concrete structures for concrete structures.