• Title/Summary/Keyword: 입체조형

Search Result 181, Processing Time 0.023 seconds

Three-Dimensional Dosimetry Using Magnetic Resonance Imaging of Polymer Gel (중합체 겔과 자기공명영상을 이용한 3차원 선량분포 측정)

  • Oh Young-Taek;Kang Haejin;Kim Miwha;Chun Mison;Kang Seung-Hee;Suh Chang Ok;Chu Seong Sil;Seong Jinsil;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.264-273
    • /
    • 2002
  • Purpose : Three-dimensional radiation dosimetry using magnetic resonance imaging of polymer gel was recently introduced. This dosimetry system is based on radiation induced chain polymerization of acrylic monomers in a muscle equivalent gel and provide accurate 3 dimensional dose distribution. We planned this study to evaluate the clinical value of this 3-dimensional dosimetry. Materials and Methods: The polymer gel poured into a cylindrical glass flask and a spherical glass flask. The cylindrical test tubes were for dose response evaluation and the spherical flasks, which is comparable to the human head, were for isodose curves. T2 maps from MR images were calculated using software, IDL. Dose distributions have been displayed for dosimetry. The same spherical flask of gel and the same irradiation technique was used for film and TLD dosimetry and compared with each other. Results : The R2 of the gel respond linearly with radiation doses in the range of 2 to 15 Gy. The repeated dosimetry of spherical gel showed the same isodose curves. These isodose curves were identical to dose distributions from treatment planning system especially high dose range. In addition, the gel dosimetry system showed comparable or superior results with the film and TLD dosimetry. Conclusion : The 3-dimensional dosimetry for conformal radiation therapy using MRI of polymer gal showed stable and accurate results. Although more studies are needed for convenient clinical application, it appears to be a useful tool for conformal radiation therapy.

The dosimetric guide of treatment modalities for Left side breast irradiation after conservative surgery (좌측 유방암 방사선 치료 시 치료 기법에 따른 선량적 고찰)

  • Kim, Tae Min;Moon, Sung Kong;Kim, Li Zzy;Kim, Se Young;Park, Ryeung Hwang;Kim, Joo Ho;Cho, Jung Heui
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.153-160
    • /
    • 2018
  • Purpose : We retrospectively analyzed doses of each radiation therapy technique used in the treatment for left breast cancer patients after partial mastectomy through dose results for normalorgans and tumor volume to use this as a clinical reference for radiation therapy of domestic left breast cancer patients. Materials and Methods : 40 patients who underwent partial mastectomy on left breast cancer were classified in 3 treatment methods. The treatment plan was evaluated by HI(homogeneity index), $D_{95%}$, and CI(conformity index), and the $V_{hot}$ for gross tumor volume and clinical target volume of each treatment method. In Cyberknife treatment, tumor volume was the same as high dose volume in the other techniques, so no consideration was given to clinical target volume. Treatment plan evaluation for normal organs were evaluated by mean dose on ipsilateral lung, heart, left anterior descending artery, opposite breast and lung, and non-target tissue. Result : Treatment with volumetric arc radiotherapy(VMAT) showed $95.84{\pm}0.75%$ of $D_{95%}$ on the clinical target volume, significantly higher than that of 3D-CRT. The $D_{95%}$ value of the total tumor volume was slightly higher than the other treatments. In Cyberknife treatment, the dose to the normal organs was significantly lower than other treatments. Overall, the maximum dose and mean dose to the heart were $26.2{\pm}6.12Gy$ and $1.88{\pm}0.2Gy$ in VMAT treatment and $20.25{\pm}9.35Gy$ and $1.04{\pm}0.19Gy$ in 3D-CRT therapy, respectively. Conclusion : In comparison on 3D-CRT and VMAT, most of the dosimetric parameters for the evaluation of the treatment plan showed similar values, so that there is no significant difference in treatment plan evaluation. It is possible to select the treatment method according to the patient's anatomical structure or possibility of breath control. Cyberknife treatment is very useful treatment for normal organs because of its accurate dose exposure to the tumor volume However, it has restrictions to treat the local area, to have relatively long treatment time and to involve invasive procedure.

  • PDF

Entre l' espace sculptural et, l' espace architectural (조각공간과 건축공간의 관계)

  • Lee Bong-Soon
    • Journal of Science of Art and Design
    • /
    • v.5
    • /
    • pp.175-216
    • /
    • 2003
  • 시각이 아닌 오감체계에 관계하는 때문에 현대미술은 외관만으로 이루어지지 않는다. 곧 예술 작품들은 하나의 장소를 관객에게 제공하여, 심리적, 물리적, 또는 예술이 존재여부에 관한 갖가지 질문들을 제기한다. 모든 예술 작품은 메시지를 담고 있다. 이러한 관점에서 개념 또는 아이디어에 우선하는 현대미술은 그들의 메시지를 전달하기 위해 우리의 사회적 배경과 보편성을 간과할 수 없다. 우리의 물체 인식은 결국 우리의 경험체계를 통해서 이루어진다고 간주하면, 현대미술의 새로운 형태는 보편적 특질들이 그 특질들 이상의 상태로 보여지도록 유도한다. 이러한 창조 행위의 시작은 현대인간의 문화 읽기이며 문화는 인간과 자연의 긴밀한 관계 속에서 이루어진다. 역사는 지나간 시간을 기록한 것이며, 이 또한 우리의 지식과 정보 체계에 속한다. 회화가 평면에 입체감을 표현하는 것과는 달리 조각은 자연 속, 즉 실재공간 속에 있는 모든 것을 표현하기 때문에 시각(visible) 이외에도 촉각(tangible)이 관여하게 된다. 조각의 특수성은 촉각(tangible)이 우선하는 것이다. 그러나 시각과 촉각은 매우 적극적으로 미학적 경험에 참여하는 감각으로 이들을 서로 분리하여 생각하기가 무척 힘들다. 왜냐하면 어떤 경험에 있어서 기억연합 또는 감각 연합에 의해 하나의 감각이 다른 여러 감각을 촉발하여 연쇄반응 혹은 '형태 Gestalt'를 이루기 때문이다. 대부분의 근대 조각 작품들은 조각대 위에 고정되어 있는 구상 형태를 지녔기 때문에 조각작품 자체가 지닌 외적 형태와 그 자체내의 공간이 더욱 중요한 역할을 하게 된다. 말하자면 미로의 비너스 조각은 대리석과 비너스 형태의 결합이다. 때문에 관객은 그 주변을 돌면서 우리 신체의 내적 공간과 시각에 의존하면서 그 작품의 중량감, 양감, 형태 등의 특질과 만나게 된다. 그러나 현대 추상조각과 개념조각은 이보다 좀 더 확장된 공간을 제시한다. 이것은 현대조각이 건축개념을 수용한 때문이며, 그것이 때로는 안 쪽에서 때로는 바깥 쪽에서 그 형태를 결정하며, 보고 듣고 느끼고 만져지고 왕래하는 등의 인식 영역인 관객의 오감체계에 직접적으로 관계하기 때문이다. 우리는 건축 공간에서, 시각 외에도 청각이나 촉각을 통해 지각한다. 대강 요약하자면 공간은 객관적 상태이기보다는 인식영역의 주관성을 통해 받아들여진 우리가 지나쳐온 것들이나 체험된 공간이다. 여기서 '받아들여지는' 일은 과거 경험들의 주체들, 언어와 문화에 의해서 이루어져야 한다. 건물, 즉 둘러싸고 있는 공간은 중앙이 아니다. 중앙은 바로 나, 둘러싸여진 나이다 나는 나의 동작에 따라 그 공간의 시스템을 변화시킬 수 있는 유동적인 중심이다 (이때의 나는 위치의 축을 변화시키는 것이 아니라, 그들을 탐색하는 것이다). 작품이 대형화되면서 이러한 건축공간개념이 현대 조각가들의 작품개념에 이용되었다고 본다. 현대미술에서 In situ작업과 특정한 장소를 위한 기획되어진 최근의 프로젝트 작업들은 대형화되어있으며, 건축에서처럼 특정한 장소를 만들어낸다. 로잘린드 크라우스(Rosalind Krauss)는 또한 '조각영역의 확장 (La sculpture dans le champ elargi)'에서 현대조각이 건축과 환경의 영역을 침범하고 있음을 지적한다. 그녀에 의하면, 1960년대 이후의 현대조각은 이러한 탈 귀속성과 조각의 자율성을 획득함으로써 조각은 건축물이 아니면서 건축물 주변에 위치하거나 풍경이 아니면서 풍경 안에 자리잡게 되었다. 이와 같이 현대의 대형조각 작품들 - 예를 들어 대형화된 미니별 조각이나 개념미술, 또는 대지예술 등 -은 풍경의 실재가 아니기 때문에 환경으로부터 구분된다고 언급하고 있다. 이들 조각은 더 이상 만져지는 실체이거나 점유하는 공간의 상징언어를 지닌 조각의 범주에 한정되지 않게 된다. 조각과 건축의 공간인식을 인체의 크기와 관련하여 보면, 메를로 퐁티(Merleau-Ponty)의 '지각의 현상학' 은 우리가 논하는 작품의 공간체계를 분석하는데 지침표가 되어준다. 메를로 퐁티가 말하는 지각은 정신에 의해서만 이루어지는 것이 아니며, 몸과 함께 이루어지는 현상이다. 지각은 우리가 부단히 눈을 움직이고 만지고 냄새를 맡고 주변을 돌아 다니면서 세계와의 직접적인 접촉을 통해 이루어 진다. 몸의 움직임을 통하여 나타나는 신체적 표현은 몸 자체가 원천적으로 지향적 활동의 주체로서 파악되는 한 이미 항상(恒常, constant) 의미 현상을 지니다. 우리의 지각이 움직이는 몸의 지향 활동을 통해 이루어진다는 것은 우리의 몸의 지향활동이 의식에 선행함을 의미한다. 몸의 움직임은 의식의 의도를 표현할 때에만 의미를 나타내는 기호가 되는 것이 아니라, 이미 그 자체가 살아있는 표현이다. 우리의 몸짓, 표정은 우리 의식이 의도하기 전에 이미 의미가 담겨있다. 몸은 그 자체가 기호(Signe)적이다. 결국. 메를로 퐁티에게서 세상(le monde entier)은 그 자신이 주체가 되어 인식한다, 그리고 이 인식 구조에는 우리의 몸이 구심점(le point centripete)이 된다. 만약 우리가 이러한 메를로 퐁티의 개념을 염두에 둔다면, 예술작품의 특성에 매우 중요한 역할을 하고 있는 재료와 크기를 이해할 수 있을 것이다.

  • PDF

Independent Verification Program for High-Dose-Rate Brachytherapy Treatment Plans (고선량률 근접치료계획의 정도보증 프로그램)

  • Han Youngyih;Chu Sung Sil;Huh Seung Jae;Suh Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.238-244
    • /
    • 2003
  • Purpose: The Planning of High-Dose-Rate (HDR) brachytherapy treatments are becoming individualized and more dependent on the treatment planning system. Therefore, computer software has been developed to perform independent point dose calculations with the integration of an isodose distribution curve display into the patient anatomy images. Meterials and Methods: As primary input data, the program takes patients'planning data including the source dwell positions, dwell times and the doses at reference points, computed by an HDR treatment planning system (TPS). Dosimetric calculations were peformed in a $10\times12\times10\;Cm^3$ grid space using the Interstitial Collaborative Working Group (ICWG) formalism and an anisotropy table for the HDR Iridium-192 source. The computed doses at the reference points were automatically compared with the relevant results of the TPS. The MR and simulation film images were then imported and the isodose distributions on the axial, sagittal and coronal planes intersecting the point selected by a user were superimposed on the imported images and then displayed. The accuracy of the software was tested in three benchmark plans peformed by Gamma-Med 12i TPS (MDS Nordion, Germany). Nine patients'plans generated by Plato (Nucletron Corporation, The Netherlands) were verified by the developed software. Results: The absolute doses computed by the developed software agreed with the commercial TPS results within an accuracy of $2.8\%$ in the benchmark plans. The isodose distribution plots showed excellent agreements with the exception of the tip legion of the source's longitudinal axis where a slight deviation was observed. In clinical plans, the secondary dose calculations had, on average, about a $3.4\%$ deviation from the TPS plans. Conclusion: The accurate validation of complicate treatment plans is possible with the developed software and the qualify of the HDR treatment plan can be improved with the isodose display integrated into the patient anatomy information.

The objective and quantitative analysis of malocclusion : Part 1. Objective malocclusion severity and subjective treatment difficulty (부정교합의 객관적 정량분석: Part 1. 객관적 부정교합 경중도와 주관적인 치료난이도의 상관관계)

  • Joo, Bo-Hoon;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.35 no.1 s.108
    • /
    • pp.60-68
    • /
    • 2005
  • The evaluation of malocclusion has to be done quantitatively and qualitatively. This will be lead toward an analysis of malocclusion severity as well as treatment difficulty. The method of proper evaluation of malocclusion severity and treatment difficulty is necessary to assess treatment effect and efficiency for the orthodontists and to establish fundamentals for planning and executing the health-related policies in private and public institutions. The purposes of this study as the first part of the objective and quantitative analysis of malocclusion were 1) to measure treatment difficulty based on the opinions of several orthodontists. and 2) to investigate the relationships between objective malocclusion severity and subjective treatment difficulty 100 pairs of dental casts that had various types and severity of malocclusion were selected from the orthodontic departments of Kyurghee University and Samsung Medical Center The objective malocclusion severity was measured with the PAR (Peer Assessment Rating) index and the subjective treatment difficulty was evaluated by 8 experienced orthodontists. The relationships between objective malocclusion severity and subjective treatment difficulty were statistically evaluated. There were significant relationships between objective malocclusion severity and subjective treatment difficulty especially in the measurements of the upper anterior alignment, the buccal occlusion. the overjet, the overbite and the midline discrepancy en the malocclusion components. The results of this study can provide the background knowledge to develop a new occlusal index. which contains both the malocclusion severity and treatment difficulty for Korean orthodontists.

On-line Image Guided Radiation Therapy using Cone-Beam CT (CBCT) (콘빔CT (CBCT)를 이용한 온라인 영상유도방사선치료 (On-line Image Guided Radiation Therapy))

  • Bak, Jin-O;Jeong, Kyoung-Keun;Keum, Ki-Chang;Park, Suk-Won
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.294-299
    • /
    • 2006
  • $\underline{Purpose}$: Using cone beam CT, we can compare the position of the patients at the simulation and the treatment. In on-line image guided radiation therapy, one can utilize this compared data and correct the patient position before treatments. Using cone beam CT, we investigated the errors induced by setting up the patients when use only the markings on the patients' skin. $\underline{Materials\;and\;Methods}$: We obtained the data of three patients that received radiation therapy at the Department of Radiation Oncology in Chung-Ang University during August 2006 and October 2006. Just as normal radiation therapy, patients were aligned on the treatment couch after the simulation and treatment planning. Patients were aligned with lasers according to the marking on the skin that were marked at the simulation time and then cone beam CTs were obtained. Cone beam CTs were fused and compared with simulation CTs and the displacement vectors were calculated. Treatment couches were adjusted according to the displacement vector before treatments. After the treatment, positions were verified with kV X-ray (OBI system). $\underline{Results}$: In the case of head and neck patients, the average sizes of the setup error vectors, given by the cone beam CT, were 0.19 cm for the patient A and 0.18 cm for the patient B. The standard deviations were 0.15 cm and 0.21 cm, each. On the other hand, in the case of the pelvis patient, the average and the standard deviation were 0.37 cm and 0.1 cm. $\underline{Conclusion}$: Through the on-line IGRT using cone beam CT, we could correct the setup errors that could occur in the conventional radiotherapy. The importance of the on-line IGRT should be emphasized in the case of 3D conformal therapy and intensity-modulated radiotherapy, which have complex target shapes and steep dose gradients.

Location Error of the Dens in a Two-Dimensional Set-up Verification During Head and Neck Radiotherapy (뇌.두경부 방사선치료 시 전자조사문영상장치를 이용한 세트업 오차 확인에서 제2경추 치상돌기 위치의 임상적 의의)

  • Kim, Dong-Hyun;Kim, Won-Taek;Ki, Yong-Gan;Nam, Ji-Ho;Lee, Mi-Ran;Jeon, Ho-Sang;Park, Dal;Kim, Dong-Won
    • Radiation Oncology Journal
    • /
    • v.29 no.2
    • /
    • pp.107-114
    • /
    • 2011
  • Purpose: To assess the degree and clinical impact of location error of the dens on the X-axis during radiotherapy to brain and head and neck tumors. Materials and Methods: Twenty-one patients with brain tumors or head and neck tumors who received three-dimensional conformal radiation therapy or intensity-modulated radiation therapy from January 2009 to June 2010 were included in this study. In comparison two-dimensional verification portal images with initial simulation images, location error of the nasal septum and the dens on the X-axis was measured. The effect of set-up errors of the dens was simulated in the planning system and analyzed with physical dose parameters. Results: A total of 402 portal images were reviewed. The mean location error at the nasal septum was 0.16 mm and at the dens was 0.33 mm (absolute value). Location errors of more than 3 mm were recorded in 43 cases (10.7%) at the nasal septum, compared to 133 cases (33.1%) at the dens. There was no case with a location error more than 5 mm at the nasal septum, compared to 11 cases (2.7%) at the dens. In a dosimetric simulation, a location error more than 5 mm at the dens could induce a reduction in the clinical target volume 1 coverage (V95: 100%${\rightarrow}$87.2%) and overdosing to a critical normal organ (Spinal cord V45: <0.1%${\rightarrow}$12.6%). Conclusion: In both brain and head and neck radiotherapy, a relatively larger set-up error was detected at the dens than the nasal septum when using an electronic portal imaging device. Consideration of the location error of the dens is necessary at the time of the precise radiation beam delivery in two-dimensional verification systems.

The Evaluation of Composite Dose using Deformable Image Registration in Adaptive Radiotherapy for Head and Neck Cancer (두경부 종양의 적응방사선치료시 변형영상정합을 이용한 합성선량 평가)

  • Hwang, Chul-Hwan;Ko, Seong-Jin;Kim, Chang-Soo;Kim, Jung-Hoon;Kim, Dong-Hyun;Choi, Seok-Yoon;Ye, Soo-Young;Kang, Se-Sik
    • Journal of radiological science and technology
    • /
    • v.36 no.3
    • /
    • pp.227-235
    • /
    • 2013
  • In adaptive radiotherapy(ART), generated composite dose of surrounding normal tissue on overall treatment course which is using deformable image registration from multistage images. Also, compared with doses summed by each treatment plan and clinical significance is considered. From the first of May, 2011 to the last of July, 2012. Patients who were given treatment and had the head and neck cancer with 3-dimension conformal radiotherapy or intensity modulated radiotherapy, those who were carried out adaptive radiotherapy cause of tumor shrinkage and weight loss. Generated composite dose of surrounding normal tissue using deformable image registration was been possible, statistically significant difference was showed to mandible($48.95{\pm}3.89$ vs $49.10{\pm}3.55$ Gy), oral cavity($36.93{\pm}4.03$ vs $38.97{\pm}5.08$ Gy), parotid gland($35.71{\pm}6.22$ vs $36.12{\pm}6.70$ Gy) and temporomandibular joint($18.41{\pm}9.60$ vs $20.13{\pm}10.42$ Gy) compared with doses summed by each treatment plan. The results of this study show significant difference between composite dose by deformable image registration and doses summed by each treatment plan, composite dose by deformable image registration may generate more exact evaluation to surrounding normal tissue in adaptive radiotherapy.

A Comprehensive Computer Program for Monitor Unit Calculation and Beam Data Management: Independent Verification of Radiation Treatment Planning Systems (방사선치료계획시스템의 독립적 검증을 위한 선량 계산 및 빔데이터 관리 프로그램)

  • Kim, Hee-Jung;Park, Yang-Kyun;Park, Jong-Min;Choi, Chang-Heon;Kim, Jung-In;Lee, Sang-Won;Oh, Heon-Jin;Lim, Chun-Il;Kim, Il-Han;Ye, Sung-Joon
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.231-240
    • /
    • 2008
  • We developed a user-friendly program to independently verify monitor units (MUs) calculated by radiation treatment planning systems (RTPS), as well as to manage beam database in clinic. The off-axis factor, beam hardening effect, inhomogeneity correction, and the different depth correction were incorporated into the program algorithm to improve the accuracy in calculated MUs. A beam database in the program was supposed to use measured data from routine quality assurance (QA) processes for timely update. To enhance user's convenience, a graphic user interface (GUI) was developed by using Visual Basic for Application. In order to evaluate the accuracy of the program for various treatment conditions, the MU comparisons were made for 213 cases of phantom and for 108 cases of 17 patients treated by 3D conformal radiation therapy. The MUs calculated by the program and calculated by the RTPS showed a fair agreement within ${\pm}3%$ for the phantom and ${\pm}5%$ for the patient, except for the cases of extreme inhomogeneity. By using Visual Basic for Application and Microsoft Excel worksheet interface, the program can automatically generate beam data book for clinical reference and the comparison template for the beam data management. The program developed in this study can be used to verify the accuracy of RTPS for various treatment conditions and thus can be used as a tool of routine RTPS QA, as well as independent MU checks. In addition, its beam database management interface can update beam data periodically and thus can be used to monitor multiple beam databases efficiently.

  • PDF

A Study of Dose Stability at Low Monitor Unit Setting for Multiple Irradiated Field (다중 조사면 치료 시 기계적 입력치(MU)에 따른 선량적 안정성에 대한 연구)

  • Kim Joo-Ho;Lee Sang-Gyu;Shin Hyun-Kyung;Lee Suk;Na Soo-Kyung;Cho Jung-Hee;Kim Dong-Wook
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.155-160
    • /
    • 2005
  • Purpose : Many authors have been introduced field in field technique and 3-D conformal radiotherapy that increased the tumor dose as well as decreased the dose of abutting critical organ. These technique have multiple beam direction and small beam segments even below 10 MU(monitor unit)for each field. we have confirmed the influence of low MU on dose output and beam stability. Materials and Methods : To study the dose output, the dose for each field was always 90MU, but it divided into different segment size: 1, 2, 3, 5, 10, 15 segments, 90, 45, 30, 18, 9, 6 MU the measurements were carried out for X-ray energy 4 MV, 6 MV, 10 MV of three LINAC(Varian 600C, 2100C, 2100C, 2100C/D), in addition each measurement was randomly repeated three times for each energy. To study the field symmetry and flatness, X-omat V films were irradiated. After being developed, films were scanned and analyzed using densitometer. Results : Influence of low MU on dose is slightly more increase output about $1.2{\sim}2.9%$ in cGy/mu than 90MU, but may not changed beam quality(flatness or symmetry), Output stability depends on dose rate(PRF)rather than beam energy, field size. Conclusion : Presented result are under the limits(out put<3%, flatness<${\pm}3%$, symmetry<2%). The 3 accelerators are safe to use and to perform conformal radiotherapy treatments in small segments, small MU around 10MU. but Even if the result presented here under the limits, continuous adjustments and periodic QA should be done for use of small MU

  • PDF