• Title/Summary/Keyword: 입체조형

Search Result 181, Processing Time 0.027 seconds

Radiation Dose-escalation Trial for Glioblastomas with 3D-conformal Radiotherapy (3차원 입체조형치료에 의한 아교모세포종의 방사선 선량증가 연구)

  • Cho, Jae-Ho;Lee, Chang-Geol;Kim, Kyoung-Ju;Bak, Jin-Ho;Lee, Se-Byeoung;Cho, Sam-Ju;Shim, Su-Jung;Yoon, Dok-Hyun;Chang, Jong-Hee;Kim, Tae-Gon;Kim, Dong-Suk;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.22 no.4
    • /
    • pp.237-246
    • /
    • 2004
  • Purpose: To investigate the effects of radiation dose-escalation on the treatment outcome, complications and the other prognostic variables for glioblastoma patients treated with 3D-conformal radiotherapy (3D-CRT). Materials and Methods: Between Jan 1997 and July 2002, a total of 75 patients with histologically proven diagnosis of glioblastoma were analyzed. The patients who had a Karnofsky Performance Score (KPS) of 60 or higher, and received at least 50 Gy of radiation to the tumor bed were eligible. All the patients were divided into two arms; Arm 1, the high-dose group was enrolled prospectively, and Arm 2, the low-dose group served as a retrospective control. Arm 1 patients received $63\~70$ Gy (Median 66 Gy, fraction size $1.8\~2$ Gy) with 3D-conformal radiotherapy, and Arm 2 received 59.4 Gy or less (Median 59.4 Gy, fraction size 1.8 Gy) with 2D-conventional radiotherapy. The Gross Tumor Volume (GTV) was defined by the surgical margin and the residual gross tumor on a contrast enhanced MRI. Surrounding edema was not included in the Clinical Target Volume (CTV) in Arm 1, so as to reduce the risk of late radiation associated complications; whereas as in Arm 2 it was included. The overall survival and progression free survival times were calculated from the date of surgery using the Kaplan-Meier method. The time to progression was measured with serial neurologic examinations and MRI or CT scans after RT completion. Acute and late toxicities were evaluated using the Radiation Therapy Oncology Group neurotoxicity scores. Results: During the relatively short follow up period of 14 months, the median overall survival and progression free survival times were $15{\pm}1.65$ and $11{\pm}0.95$ months, respectively. The was a significantly longer survival time for the Arm 1 patients compared to those in Arm 2 (p=0.028). For Arm 1 patients, the median survival and progression free survival times were $21{\pm}5.03$ and $12{\pm}1.59$ months, respectively, while for Arm 2 patients they were $14{\pm}0.94$ and $10{\pm}1.63$ months, respectively. Especially in terms of the 2-year survival rate, the high-dose group showed a much better survival time than the low-dose group; $44.7\%$ versus $19.2\%$. Upon univariate analyses, age, performance status, location of tumor, extent of surgery, tumor volume and radiation dose group were significant factors for survival. Multivariate analyses confirmed that the impact of radiation dose on survival was independent of age, performance status, extent of surgery and target volume. During the follow-up period, complications related directly with radiation, such as radionecrosis, has not been identified. Conclusion: Using 3D-conformal radiotherapy, which is able to reduce the radiation dose to normal tissues compared to 2D-conventional treatment, up to 70 Gy of radiation could be delivered to the GTV without significant toxicity. As an approach to intensify local treatment, the radiation dose escalation through 3D-CRT can be expected to increase the overall and progression free survival times for patients with glioblastomas.

전신 정위 프레임을 이용한 환자의 움직임 및 외부자세 setup 오차 분석

  • 정진범;정원균;서태석;최경식;지영훈;이형구;최보영
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.59-59
    • /
    • 2003
  • 목적 : 환자의 호흡에 의한 움직임 및 부정확한 환자 자세 setup 때문에 3 차원 전신 정위 방사선치료,3 차원 입체조형 방사선치료 IMRT와 같은 방사선 치료기술에서 병소에 대한 정확한 표적 위치측정은 매우 어려운 실정이다. 그러므로 본 연구는 방사선 치료시 환자의 움직임을 최대한 고정시켜 줄 수 있으며 환자 자세에 대한 setup 오차를 감소시키고 환자 전신에 산재한 병소의 위치를 좌표화할 수 있는 전신 정위 프레임 제작과 제작한 프레임에 대한 고정효과 및 재현성을 나타내는 환자 자세의 setup 오차를 평가하는데 있다. 재료 및 방법 : 자체 제작한 전신 정위 프레임 구조는 CT 영상 촬영 가능성에 중점을 두고 병소 표적의 좌표실현 및 환자체형에 따른 다양성 그리고 프레임에 대한 견고성 및 안정성 확인에 초점화하여 제작하였다. 이렇게 제작된 전신 정위 프레임에 대한 방사선 투과율 측정 실험과 CCTV 카메라와 DVR(Digital Video Recorder)를 이용해 환자 자세 변화에 대한 영상을 획득하여 matlab으로 구현한 오차분석용 프로그램으로 환자 외부자세에 대한 오차 비교 평가하고 CT 촬영에 의한 가상표적 위치측정 실험을 수행하였다. 또 한 고정벨트 추가 사용으로 인한 환자의 고정효과 정도를 살펴보았다. 결과 : 제작된 전신 정위 프레임에 대한 방사선 투과율은 마그네트론 10, 21 MeV의 에너지에서 95, 96% 의 투과율이 측정되었고 30 $^{\circ}$. 60 。각도의 경사로 빔이 전달될 때는 90.3, 94.4% 가 측정되었다. CCTV 카메라를 이용하여 흉부 및 복부의 움직임을 촬영한 영상을 Matlab프로그램으로 구현한 오차분석 프로그램을 적용한 결과, 환자 자세에 대한 오차의 평균값은 흉부의 lateral 방향에서는 3.63$\pm$1.4 mm, AP 방향에서는 2.1$\pm$0.82 mm이었다. 그리고 복부의 later의 방향에서는 7.0$\pm$2.1 mm, AP 방향에서는 6.5$\pm$2.2 mm 이었다. 또한 표적 위치측정을 위해서 환자의 피부에 임의의 가상표적을 부착하고 CT 촬영한 영상결과, 프레임으로 가상표 적에 대한 위치를 정확히 파악할 수 있었다. 결론 : 제작된 프레임을 적용하여 방사선투과율 측정실험, 환자 외부자세에 대한 오차 측정실험, 가상표적 위치측정 실험 등을 수행하였다. 환자 외부자세에 대한 오차 측정실험 경우, 더 많은 Volunteer를 적용하여 보다 정확한 오차 측정실험이 수행되어야 할 것이며 정확한 표적 위치 측정실험을 위해서 내부 마커를 삽입한 환자를 적용한 임상실험이 수행되어야 할 것이다. 또한 위치결정에서 획득한 좌표값의 정확성을 알아보기 위해서 팬톰을 이용한 방사선조사 실험이 추후에 실행되어져야 할 것이다. 그리고 제작된 프레임에 Rotating X선 시스템과 내부 장기의 움직임을 계량화하고 PTV에서의 최적 여유폭을 설정함으로써 정위 방사선수술 및 3 차원 업체 방사선치료에 대한 병소 위치측정과 환자의 자세에 대한 setup 오차측정 결정에 도움이 될 수 있을 것이라고 사료된다.

  • PDF

Initial Experience for 3-D Conformal Boost Treatments in Carcinoma of the Nasopharynx (비인강암환자에서 시행한 3차원 입체조형 방사선치료의 조기 임상결과)

  • Jang Ji-Young;Cho Moon-June;Kim Ki-Hwan;Song Chang-Joon;Kim Byoung-Kook;Kim Jun-Sang;Kim Jae-Sung
    • Korean Journal of Head & Neck Oncology
    • /
    • v.16 no.2
    • /
    • pp.172-176
    • /
    • 2000
  • Objectives: To improve local control and reduce toxicity, 3-D conformal radiotherapy was used as a boost the primary tumor site following fractionated radiotherapy in patients with nasopharyngeal carcinoma. Materials and Methods: Eight patients with previously untreated nasopharyngeal carcinomas were treated with 3-D conformal radiotherapy following fractionated radiotherapy from September 1998 to April 2000. All patients had biopsy confirmation of disease before radiation therapy. Stages were II in 1, III in 5, and IV in 2. Two patients received cisplatin based chemotherapy in addition to radiation therapy; induction chemotherapy in 1, concurrent chemoradiation in 1. 3-D conformal radiotherapy delivered using 6MV Linac as a boost(range 25.2-28.8Gy, median 25.7Gy) following conventionally fractionated radiotherapy(range 50.4Gy). Average total dose ranged from 75.6-79.2Gy(median 76Gy). Follow-up time was 4-21 months(median 9.6 months). Results: Seven of 8 patients were evaluated radiologically within 3 months after completion of radiation therapy. All 7 patients were seen complete remission. One of 7 patients had distant metastasis after 5 months and local failure after 7 months. The tree interval of local recurrence was ranged from 4 - 21 months(median 10.2 months). One patient without radiological evaluation got complete remission clinically. Treatment related toxicity was grade 1-3 xerostomia, dysphagia, and mucositis. During 3-D conformal radiotherapy, there was no aggravation of any toxicity. Conclusion: Although the number of patients was small and follow-up period was short, 3-D conformal radiotherapy following conventional radiotherapy improved tumor control and dose escalation without increased toxicity. Survival and late toxicity should be evaluated through long term follow-up. In addition, it is necessary to confirm the benefits of 3-D conformal radiotherapy in nasopharyngeal carcinoma with randomized trial.

  • PDF

A Study of Cancer Incidence Rate due to Photoneutron Dose during Radiation Therapy for Prostate Cancer Patients (전립샘암 환자의 방사선 치료 시 광중성자 선량으로 인한 암 발생률의 연구)

  • Lee, Joo-Ah
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.471-476
    • /
    • 2022
  • The purpose of this study was to study the probability of cancer occurrence due to photoneutron dose exposure of the colon and thyroid gland, which are normal organs, in 3D CRT, IMRT 5 portals, and IMRT 9 portals, which are radiotherapy methods for prostate cancer. The total prescribed dose for prostate cancer was 6600 cGy, 220 cGy per dose, and 30 divided irradiations were applied for the total number of times. After setting up the Rando phantom on the treatment table (couch) of the medical linear accelerator used in the experiment, an optically stimulated luminescence albedo neutron dosimeter was placed on the corresponding area of the large intestine and thyroid gland of the phantom for measurement. During 3D CRT of prostate cancer, the probability of secondary cancer due to photoneutron dose to the colon and thyroid gland, which are normal organs, was 1.8 per 10,000 people. And IMRT 5 portals were 8.7 per 10,000 people, which was about 5 times larger than 3D CRT. IMRT 9 portals derived the result that there is a probability that 1.2 people per 1,000 people will develop cancer. Based on this study, the risk of secondary radiation exposure due to the dose of photoneutrons generated during radiation therapy is studied, and it is thought that it will be used as useful data for radiation protection in relation to the stochastic effect of radiation in the future.

The Effect of Convergence Vision Therapy on VR Cybersickness (시지각 훈련이 사이버 멀미에 대한 융복합적 효과)

  • Cho, Hyung-Chel;Ro, Hyo-Lyun;Lee, HeeJae
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.55-65
    • /
    • 2022
  • The purpose of this paper was to investigate the relationship between cybersickness symptoms and visual function and to determine whether visual perception training is effective in reducing symptoms of cybersickness. The study subjects were healthy adult males who experienced the same virtual reality program for 15 minutes. Afterwards, the VR satisfaction score and cybersickness level were measured and classified into a comfortable virtual reality program viewer group (CVR group, 20 people) and an uncomfortable virtual reality program viewer group (UVR group, 20 people). Visual function test was performed on all subjects, and the vision therapy training program was applied to the UVR group once a week for 40 minutes 12 times, and then the visual function and SSQ questionnaire were re-evaluated. Subjects with diplopia were 55% in the UVR group and 5% in the CVR group, which was significantly higher in the UVR group, there were differences in stereopsis, exophoria, near point convergence(p<.01) and vergence function(p<.001) between the two groups. After vision therapy, changes in SSQ, stereopsis, near point convergence, and vergence function of UVR user group were positively changed(p<.01). Therefore, cybersickness symptoms are related to visual function, it seems that the vision therapy can be used as a way to alleviate the symptoms of cybersickness.

A Study on the Genetic Risk and Carcinogenesis Probability of Prostate Cancer Patients Due to Photoneutron Generation (광중성자 발생으로 인한 전립샘암 환자의 유전적 위험과 발암의 확률에 관한 연구)

  • Joo-Ah Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.473-479
    • /
    • 2023
  • In this study, the dose of photoneutrons generated during radiotherapy of prostate cancer using high energy was measured using a photo-stimulated luminescence dosimeter. In addition, this study was intended to study the probability of side effects occurring in the abdomen. A medical linear accelerator capable of generating 15 MV energy, True Beam STx (Varian Medical Systems, USA) and a radiation treatment planning system (Eclipse, Varian Medical Systems, USA) were used. A human body phantom was installed on the couch of the linear accelerator, and an Albedo Neutron Optical Stimulation Luminescence Neutron Detector (Landauer Inc., IL, USA) was used to measure the photoneutron dose. The photoneutron dose value in the abdomen of VMAT and 3C-CRT was 52.8 mSv, more than twice as high as VMAT compared to 3D-CRT. During radiotherapy of prostate cancer, the probability of causing side effects in the abdomen due to light neutron dose was calculated to be 3.2 per 1,000 for VMAT and 1.4 for 3D-CRT. By studying the abdomen, which has a major side effect that can occur during radiotherapy of prostate cancer, it is expected that it will be used as a meaningful study to study the quality of life and stochastic effect of prostate cancer patients

Computer Assisted EPID Analysis of Breast Intrafractional and Interfractional Positioning Error (유방암 방사선치료에 있어 치료도중 및 분할치료 간 위치오차에 대한 전자포탈영상의 컴퓨터를 이용한 자동 분석)

  • Sohn Jason W.;Mansur David B.;Monroe James I.;Drzymala Robert E.;Jin Ho-Sang;Suh Tae-Suk;Dempsey James F.;Klein Eric E.
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • Automated analysis software was developed to measure the magnitude of the intrafractional and interfractional errors during breast radiation treatments. Error analysis results are important for determining suitable planning target volumes (PTV) prior to Implementing breast-conserving 3-D conformal radiation treatment (CRT). The electrical portal imaging device (EPID) used for this study was a Portal Vision LC250 liquid-filled ionization detector (fast frame-averaging mode, 1.4 frames per second, 256X256 pixels). Twelve patients were imaged for a minimum of 7 treatment days. During each treatment day, an average of 8 to 9 images per field were acquired (dose rate of 400 MU/minute). We developed automated image analysis software to quantitatively analyze 2,931 images (encompassing 720 measurements). Standard deviations ($\sigma$) of intrafractional (breathing motion) and intefractional (setup uncertainty) errors were calculated. The PTV margin to include the clinical target volume (CTV) with 95% confidence level was calculated as $2\;(1.96\;{\sigma})$. To compensate for intra-fractional error (mainly due to breathing motion) the required PTV margin ranged from 2 mm to 4 mm. However, PTV margins compensating for intefractional error ranged from 7 mm to 31 mm. The total average error observed for 12 patients was 17 mm. The intefractional setup error ranged from 2 to 15 times larger than intrafractional errors associated with breathing motion. Prior to 3-D conformal radiation treatment or IMRT breast treatment, the magnitude of setup errors must be measured and properly incorporated into the PTV. To reduce large PTVs for breast IMRT or 3-D CRT, an image-guided system would be extremely valuable, if not required. EPID systems should incorporate automated analysis software as described in this report to process and take advantage of the large numbers of EPID images available for error analysis which will help Individual clinics arrive at an appropriate PTV for their practice. Such systems can also provide valuable patient monitoring information with minimal effort.

  • PDF

Dosimetric Comparision for Rectal Cancer using 3D-CRT, IMRT, Tomotherapy (직장암의 방사선 치료 시 3D-CRT, IMRT, Tomotheray를 이용한 치료계획 및 주변 정상장기 선량 비교)

  • Lee, Seung-chul;Kim, Young-Jae;Jang, Seong-Joo
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.393-399
    • /
    • 2017
  • In this paper, we compared the Radiation treatment plan of rectal cancer on 3D-conformal Radiation Therapy, Tomotherapy and Linac Based IMRT using treatment planning system and to find the optimal treatment technique. The results of the comparison of treatments are as follows. In tumor tissue absorption dose more than 95% of the dose prescription dose and normal tissues(bladder, small bowel, fumer bone head) was NOT Normal tissue complication rate(V40, V30, V20, V10) but, The most effective treatment(dose distribution) for the three treatments was tomotherapy based IMRT. The worst was 3D-CRT. If this study is applied to patients under their health status and physical environment, patient's prognosis and quality of life will improve.

Development of Electrical Resistivity Survey System for Geotechnical Centrifuge Modeling (원심모형실험을 위한 전기비저항 탐사 시스템 구축)

  • Cho, Hyung-Ik;Bang, Eun-Seok;Yi, Myeong-Jong;Choo, Yun-Wook;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.19-31
    • /
    • 2014
  • In order to investigate ground state change visually in physical model during centrifuge testing, electrical resistivity survey was adopted. Commercial resistivity survey equipment verified at various in-situ sites was utilized. The resistivity survey equipment installed in centrifuge facility was remotely controlled through intranet and electrical resistivity images obtained while centrifuge testing was being checked by real-time inversion. To verify the stable operation of the developed resistivity survey system, preliminary tests were conducted. Model ground was uniformly constructed using unsaturated soil and saline water was dropped on the ground surface to simulate contaminant flow situation. During the 10 g centrifuge tests, electrical resistivity was continuously detected and the testing results were compared with those of identically carried out 1 g centrifuge tests. In addition, the electrical resistivity was directly measured immediately after the centrifuge test by open cutting the model. Finally, reliability of electrical resistivity survey in the centrifuge test was verified by comparing those testing results.

Application of Intensity Modulated Radiation Therapy (IMRT) in Prostate Cancer (전립선암에서 강도변조방사선치료 (Intensity Modulated Radiation Therapy)의 적용)

  • Park Suk Won;Oh Do Hoon;Bae Hoon Sik;Cho Byung Chul;Park Jae Hong;Han Seung Hee
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.68-72
    • /
    • 2002
  • This study was done to implement intensity-modulated radiation therapy (IMRT) for the treatment of primary prostate cancer and to compare this technique with conventional treatment methods. A 72-year-old male patient with prostate cancer stage T2a was treated with IMRT delivered with dynamic multi-leaf collimation. Treatment was designed using an inverse planning algorithm, which accepts dose and dose-volume constraints for targets and normal structures. The IMRT plan was compared with a three-dimensional (3D) plan using the same 6 fields technique. Lower normal tissue doses and improved target coverage were achieved using IMRT at current dose levels, and facilitate dose escalation to further enhance locoregional control and organ movement during radiotherapy is an important issue of IMRT in prostate cancer.