• Title/Summary/Keyword: 입체도화

Search Result 39, Processing Time 0.018 seconds

A Study on the Generation of Draft Map using Kompsat-1 Satellite Image (아리랑 1호 위성영상을 이용한 도화원도 제작에 관한 연구)

  • Jeong, Soo;Kim, Youn-Soo;Lee, Ho-Nam
    • Proceedings of the KSRS Conference
    • /
    • 2001.03a
    • /
    • pp.15-18
    • /
    • 2001
  • 아리랑 1호 위성은 EOC 센서를 이용하여 지도제작에 활용될 수 있는 고해상도의 입체영상을 제공하는 기능을 포함하고 있다. 그러나, 기존의 사진측량 도화장비나 대부분의 수치사진측량 시스템에서 아리랑 1호 위성영상을 이용한 도화기능이 제공되고 있지 않으므로, 아리랑 1호 위성영상을 이용한 지도제작은 정사영상에 의한 영상지도 제작으로 국한되어 이루어져 왔다. 본 연구에서는 상용 수치사진측량 시스템 상에서 아리랑 1호의 입체위성영상을 DLT 모델에 적용하여 입체표정을 수행한 후에 도화작업을 시범적으로 실시하였다. 또한 그 결과를 분석함으로써 아리랑 1호 입체영상에 의한 도화원도 제작의 범위와 타당성을 분석하였다.

  • PDF

Accuracy Assessment on the Stereoscope based Digital Mapping Using Unmanned Aircraft Vehicle Image (무인항공기 영상을 이용한 입체시기반 수치도화 정확도 평가)

  • Yun, Kong-Hyun;Kim, Deok-In;Song, Yeong Sun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.111-121
    • /
    • 2018
  • RIn this research, digital elevation models, true-ortho image and 3-dimensional digital complied data was generated and evaluated using unmanned aircraft vehicle stereoscopic images by applying photogrammetric principles. In order to implement stereoscopic vision, digital Photogrammetric Workstation should be used necessarily. For conducting this, in this study GEOMAPPER 1.0 is used. That was developed by the Ministry of Trade, Industry and Energy. To realize stereoscopic vision using two overlapping images of the unmanned aerial vehicle, the interior and exterior orientation parameters should be calculated. Especially lens distortion of non-metric camera must be accurately compensated for stereoscope. In this work. photogrammetric orientation process was conducted using commercial Software, PhotoScan 1.4. Fixed wing KRobotics KD-2 was used for the acquisition of UAV images. True-ortho photo was generated and digital topographic map was partially produced. Finally, we presented error analysis on the generated digital complied map. As the results, it is confirmed that the production of digital terrain map with a scale 1:2,500~1:3,000 is available using stereoscope method.

A Feasibility Study for Mapping Using The KOMPSAT-2 Stereo Imagery (아리랑위성 2호 입체영상을 이용한 지도제작 가능성 연구)

  • Lee, Kwang-Jae;Kim, Youn-Soo;Seo, Hyun-Duck
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.197-210
    • /
    • 2012
  • The KOrea Multi-Purpose SATellite(KOMPSAT)-2 has a capability to provide a cross-track stereo imagery using two different orbits for generating various spatial information. However, in order to fully realize the potential of the KOMPSAT-2 stereo imagery in terms of mapping, various tests are necessary. The purpose of this study is to evaluate the possibility of mapping using the KOMPSAT-2 stereo imagery. For this, digital plotting was conducted based on the stereoscopic images. Also the Digital Elevation Model(DEM) and an ortho-image were generated using digital plotting results. An accuracy of digital plotting, DEM, and ortho-image were evaluated by comparing with the existing data. Consequently, we found that horizontal and vertical error of the modeling results based on the Rational Polynomial Coefficient(RPC) was less than 1.5 meters compared with the Global Positioning System(GPS) survey results. The maximum difference of vertical direction between the plotted results in this study and the existing digital map on the scale of 1/5,000 was more than 5 meters according as the topographical characteristics. Although there were some irregular parallax on the images, we realized that it was possible to interpret and plot at least seventy percent of the layer which was required the digital map on the scale of 1/5,000. Also an accuracy of DEM, which was generated based on the digital plotting, was compared with the existing LiDAR DEM. We found that the ortho-images, which were generated using the extracted DEM in this study, sufficiently satisfied with the requirement of the geometric accuracy for an ortho-image map on the scale of 1/5,000.

In-situ Self-calibration of Non-metric Camera and Digital Stereo Plotting for Public Survey (공공측량 적용을 위한 비측정용 카메라의 현장자체검정 및 수치 입체 도화)

  • Seo, Sang-Il;Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.145-154
    • /
    • 2017
  • In recent years, demand for 1 / 1,000 digital map production has increased in various fields such as construction and urban planning. As a result, the use of low-cost non-metric cameras that replace expensive aerial photogrammetry equipment is required. In Korea, researches are being continuously carried out to produce a large scale digital map by photographing a small target area with a non-metric camera. However, due to the limitation of the accuracy of the non-metric camera, it is difficult to do digital mapping with stereoscopic photographs. In this study, we tried to verify the possibility of large-scale digital mapping to utilize non-metric camera for public survey. For this purpose, the accuracy of the digital mapping results of the non-metric camera and the results of the DMC camera were compared and analyzed. After performing in-situ self-calibration including 8 standard additional parameters, we plotted to a scale of 1/1,000 and confirmed that the RMSE is suitable for public survey accuracy of ${\pm}0.145m$ in horizontal and ${\pm}0.153$ m in vertical.

A Study on the Three Dimensional Coordinates Analysis by Direct Linear Transformation (직접선형변환을 이용한 3차원 좌표해석에 관한 연구)

  • 김감래;이호남
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.5 no.2
    • /
    • pp.47-55
    • /
    • 1987
  • In this paper, the direct linear transformation is described in which a inner and exterior orientation parameters are treated as unknown for non-iterative direct space resection, and the computer program was developed to obtain object space coordinates. Image coordinates measurements are conducted with analogue stereo-plotter and digitizer. To prove the appropriateness of the two image coordinate measurement devices and the DLT method, the standard errors of object space coordinates are compared with semi-analytical method.

  • PDF

A Study on Image Analysis System construction Using Aerial photos (항공사진 입체시를 활용한 영상분석 시스템 개발에 관한 연구)

  • Kim Kam-Rae;Cheong Hae-Jin;HwangBo Sang-Won;Cho Won-Woo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.171-176
    • /
    • 2006
  • 항공사진은 종중복도 60%이상, 횡중복도 30%이상 촬영되어지는 특성과 도화에 사용되는 입체시 원리를 이용하여 사진 자체를 화면상에 입체적으로 구현할 수 있다. 이러한 입체적 사용은 건물의 높이 및 정확한 현황을 파악하는 주된 분석방법론을 제시하고 있어 이러한 방법을 이용하여 시스템적으로 입체시하고 사람의 육안으로 쉽게 판독을 지원할 수 있는 시스템을 구축함으로서 대상지역에 대한 변화탐지, 시대별 및 지역별 변천과정, 무허가 건축물 판독 등 다양한 용도로 활용할 수 있다. 본 연구에서는 시스템 구현을 위해서 개발 언어로 Visual C++을 사용하였으며, 사용자가 직접 입체판독 및 분석을 수행할 수 있는 플랫폼을 구비함으로서 오류를 최소화 할 수 있도록 편광 모니터(Z-Screen)을 사용하여 시스템 개발을 수행하였다. 또한 개발환경은 Microsoft Window OS 환경 상에서 구동될 수 있도록 개발함으로서 시스템의 범용적 사용을 위한 기초 환경을 제공하도록 개발하였다.

  • PDF

Accuracy Assessment of Feature Collection Method with Unmanned Aerial Vehicle Images Using Stereo Plotting Program StereoCAD (수치도화 프로그램 StereoCAD를 이용한 무인 항공영상의 묘사 정확도 평가)

  • Lee, Jae One;Kim, Doo Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.257-264
    • /
    • 2020
  • Vectorization is currently the main method in feature collection (extraction) during digital mapping using UAV-Photogrammetry. However, this method is time consuming and prone to gross elevation errors when extracted from a DSM (Digital Surface Model), because three-dimensional feature coordinates are vectorized separately: plane information from an orthophoto and height from a DSM. Consequently, the demand for stereo plotting method capable of acquiring three- dimensional spatial information simultaneously is increasing. However, this method requires an expensive equipment, a Digital Photogrammetry Workstation (DPW), and the technology itself is still incomplete. In this paper, we evaluated the accuracy of low-cost stereo plotting system, Menci's StereoCAD, by analyzing its three-dimensional spatial information acquisition. Images were taken with a FC 6310 camera mounted on a Phantom4 pro at a 90 m altitude with a Ground Sample Distance (GSD) of 3 cm. The accuracy analysis was performed by comparing differences in coordinates between the results from the ground survey and the stereo plotting at check points, and also at the corner points by layers. The results showed that the Root Mean Square Error (RMSE) at check points was 0.048 m for horizontal and 0.078 m for vertical coordinates, respectively, and for different layers, it ranged from 0.104 m to 0.127 m for horizontal and 0.086 m to 0.092 m for vertical coordinates, respectively. In conclusion, the results showed 1: 1,000 digital topographic map can be generated using a stereo plotting system with UAV images.

A Study on the establishment of Korean maritime boundaries (입체시를 활용한 변화지역 자동 추적 알고리즘 개발)

  • Kim, Kam-Lae;Lee, Ho-Nam;Cheong, Hae-Jin;Cho, Won-Woo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.115-119
    • /
    • 2007
  • 종중복도 60%이상, 횡중복도 30%이상 촬영되어지는 항공영상과 스테레오 촬영이 가능한 위성영상은 도화에 사용되는 입체시를 이용하여 영상(Stereo Aerial Image) 자체를 화면상에 입체적으로 구현하여 건물의 높이 정보 판독 및 해당 지역상에서 년도별 변화지역을 판독하는 일련의 업무 수행에 있어 중요한 자료로 활용하고 있지만 장기간의 작업시간, 작업에 대한 정확성에 취약점을 나타내고 있으며, 이는 행정업무의 효율성 저하요인을 발생하고 있다. 이에 본 연구에서는 이러한 항공사진 및 위성영성의 촬영상의 특성을 활용하여 영상 매칭 DEM을 활용한 높이정보의 변화와 영상 정합을 통한 변화지역 판독을 자동화 하는 시스템을 구현하였다. 시스템 구현을 위해서 개발 언어로 Visual C++을 사용하였으며, 개발된 알고리즘에 대한 평가 수행을 위해 사용자가 직접 입체 판독 및 분석을 수행할 수 있도록 편광 모니터를 사용하여 판독 시스템을 추가적으로 개발하였다.

  • PDF

Development of 3D Digital Map Editing System (3차원 수치지도 편집 시스템 개발)

  • Lee, Jae-Kee;Park, Ki-Surk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.3
    • /
    • pp.239-247
    • /
    • 2007
  • The 3D spatial information projects have been processed and utilized in varied fields. However, the research of the 3D digital map for a role of national base map is not enough. The draft maps, which are raw data for generating 2D digital map, shows problems in generating 3D digital map. The objective of this research is to develop 3D digital map editing system for modifying and editing of 3D digital map from 2D vector and raster information such as a draft map, 2D digital map, DEM, aerial photo and so forth. This 3D digital map editing system was designed to include data structure of geometric and attribute object under provision of ISO/TC211 and OGC standard. This system was developed to implement the function of 3D stereo editing based on stereo viewing, 3D view editing based on projective, and 3D spatial operation. Using this system, 3D digital maps were able to be successfully produced from not only existing draft maps but also modified or edited draft maps and then application results were compared and analyzed.

A Study on Application of SPOT5 Image for Renewal of Digital Map (수치지도 갱신을 위한 SPOT5 영상의 활용에 관한 연구)

  • Kang Joon Mook;Yun Hee Cheon;Park Joon Kyu;Um Dae Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.1
    • /
    • pp.89-96
    • /
    • 2005
  • With acquisition of satellite image being facilitated due to recent advancement in Electro optical and astronautic technologies, focus on establishment of Geoinformation and analysis using satellite images have increased. This research have conducted digital plotting and digitizing operation, utilizing stereo images and grey level images provided by SPOT5 satellite and evaluated the accuracy through comparison and analysis with digital map results. Digital plotting results acquired using stereo images have been compared and analyzed on the basis of scale 1:25,000 digital map results published by National Geographic Information Institute. Accuracy of 20 check points have showed RMSE results 5.369 m at X (Easting) and 4.718 m, digitizing using grey level images showed RMSE results 7.616 m in X (Easting) and Y (Northing) 6.532 m. This is within the allowance of accuracy standards for scale 1:25,000 maps, and although digitizing operation was confirmed to have lower accuracy than that of digital plotting, using the former is considered to be more effective in terms of economical efficiency.