• Title/Summary/Keyword: 입자 거동

Search Result 1,025, Processing Time 0.032 seconds

Behavior Analysis of Particle Crushing about Sabkha Layer under Hydrotest (Sabkha층의 Hydrotest 시 입자파쇄 거동분석)

  • Kim, Seokju;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.9
    • /
    • pp.57-65
    • /
    • 2013
  • Carbonate sands can be crushed under low confining pressure to achieve high compressibility. So particle crushing has significant influence on characteristics of strength and deformation. Trial embankment and hydrotest are conducted on Sabkha layer, consisting of carbonate sand to build tank structure. In this paper the settlement behavior was analyzed from each test. Particle crushing happened from 80 to 170kPa stress under compression test, and calcium was detected from chemical test. The test result came out Sabkha soil was very weak and easy to be crushing. About trial embankment test, particle crushing was not happen, and then extinction of pore water pressure and settlements were finished just during 2 days. On the other hand, the long-term settlement was happened in hydrotest. So the two test results did not correspond to each other. If loading stress is higher than yielding stress, instant settlement and secondary compression settlement are happened as a result of the particle crushing.

Shear Strength Characteristics of Geo - Soluble - Materials (용해재료가 포함된 지반의 전단강도 특성)

  • Tran, M. Khoa;Park, Jung-Hee;Byun, Yong-Hoon;Shin, Ho-Sung;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.17-25
    • /
    • 2011
  • A fabric of soil media may change due to certain factors such as dissolution of soluble particles, desiccation, and cementation. The fabric changes affect the mechanical behavior of soils. The purpose of this study is to investigate the effects of geo-material dissolution on shear strength. Experiments and numerical simulations are carried out by using a conventional direct shear and the discrete element method. The dissolution specimens are prepared with different volumetric salt fraction in sand soils. The dissolution of the specimens is implemented by saturating the salt-sand mixtures at different confining stresses in the experimental study or reducing the sizes of soluble particles in the numerical simulations. Experimental results show that the angle of shearing resistance decreases with the increase in the soluble particle content and the shearing behavior changes from dilative to contractive behavior. The numerical simulations exhibit that macro-behavior matches well with the experimental results. From the microscopic point of view, the particle dissolution produces a new fabric with the increase of local void, the reduction of contact number, the increase of shear contact forces, and the anisotropy of contact force chains compared with the initial fabric. The shearing behavior of the mixture after the particle dissolution is attributed to the above micro-behavior changes. This study demonstrates that the reduction of shearing resistance of geo-material dissolution should be considered during the design and construction of the foundation and earth-structures.

Behavior of Microdomains in Block Copolymer/Nanoparticle Nanocomposite Thin Films under Electric Field (공중합체/나노입자 복합체 박막 내 미세구조의 전기장 하에서의 거동)

  • Bae, Joonwon
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.290-293
    • /
    • 2017
  • In this study, the fundamental behavior of microdomains in block copolymer/nanoparticle composite thin films was examined. In this experiment, polystyrene-b-poly(2-vinylpyridine) block copolymer and CdSe nanoparticles having a noncentrosymmetric property were employed. Composite hybrid thin films were produced by a spin coating method, and changes in the internal structure of composite thin films were monitored mainly by transmission electron microscopy. In summary, nanoparticles resided inside the thin film relatively intact, however, the block copolymer microdomains rotated parallel to the electric field direction. This study will be very helpful for future research activities regarding behaviors of heterogeneous composite materials under external fields.

Microstructure Orientation of Alumina Laminate Composites (알루미나 적층복합체의 미세구조 배향)

  • 박상엽;송준호
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.4
    • /
    • pp.351-359
    • /
    • 2001
  • 배향 입자층과 비배향 입자층이 상호적층된 알루미나 적층복합체를 연속 테입캐스팅 및 상압소결에 의해 제조하였다. 알루미나의 미세구조 배향을 위하여 알루미나 판상입자를 배향물질(template)로 사용하였으며, 알루미나의 입자배향 거동에 미치는 액상의 영향을 알아보기 위해 anorthite(CaAl$_2$Si$_4$O$_{8}$)를 첨가하였다. 적층체 내의 알루미나 입자배향을 X-선 회절법으로 분석한 결과 (006)면과 (1010)면으로 배향되어 있었다. 액상조성이 첨가되지 않은 경우와 비교시 anorthite를 첨가한 경우 입자배향층 내에는 액상으로 인한 큰 기공이 생성되었으며 배향도는 감소되었다. 그러나, 액상조성으로 anorthite가 첨가되어 입자배향이 이루어진 적층체 계면에서는 입자배향으로 인한 효과적인 균열전파 제어 거동이 관찰되었다.

  • PDF

The Growth Behavior of Surface Grains of WC-6%Co Alloy during Heat Treatment (WC-Co 소결체의 열처리시 나타나는 표면 입자 성장의 거동에 관한 연구)

  • 여수형;이욱성;백영준;채기웅;임대순
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.1
    • /
    • pp.28-33
    • /
    • 2001
  • WC-6%Co 소결체를 열처리할 때 발생하는, 시편 표면에서의 급격한 입자 성장 거동을 열처리 분위기를 변수로 하여 관찰하였다. 열처리 분위기로 수소와 메탄을 각각 사용하였고, 온도는 1400~145$0^{\circ}C$, 압력은 1~3 Torr, 그리고 시간은 100분까지 변화시켰다. 표면에서의 입자 성장은 수소 분위기보다 메탄 분위기를 사용하는 경우 훨씬 빠르게 일어났다. 그리고 열처리 온도가 증가할수록, 압력이 감소할수록 입자 성장 속도가 증가하였다. 이때 성장한 입자의 크기 분포는 비정규 분포를 보였다. 한편, 입자 성장은 열처리시 증발하는 시편의 Co 무게 감소와 밀접한 관계를 보였다. 이러한 표면에서의 입자 성장 현상을 열처리한 조건과 관련되어 WC-Co 상태도에서 예측할 수 있는, 탈탄-탄화 반응 및 비정상 입자 성장 현상 관점으로 설명하였다.

  • PDF

Theoretical study on the particle contamination in silane plasma reactor for semiconductor processing (반도체 제조용 사일렌 플라즈마 반응기 내에서의 입자 오염에 관한 이론적 연구)

  • 김동주;김교선
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.172-178
    • /
    • 2000
  • We developed the model equations to investigate the particle movement and growth theoretically in a-Si plasma CVD reactor, where those particles act as the source of contamination. We included the effects of fluid convection, particle diffusion and external forces (ion drag force, electrostatic force and gravitational force) onto the particles to analyze the movements of particles in plasma reactor. Taking into account the particle charge distribution, the particle growth by coagulation between the charged particles was investigated. Most of those particles are located in the region near the sheath boundaries by the balance between the ion drag and electrostatic forces. The particle concentrations in the sheath region and in the bulk plasma region are almost zero. The sizes of the predator particles increase with time by the coagulation with protoparticles and, as a result, the surface area and the average charge of predator particles also increase with time.

  • PDF

Evolution of Particle Crushing and Shear Behavior with Respect to Particle Shape Using PFC (PFC를 이용한 입자 형상에 따른 입자 파쇄 및 전단거동 전개)

  • Jo, Seon-Ah;Cho, Gye-Chun;Lee, Seok-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.41-53
    • /
    • 2009
  • In order to analyze the influence of particle shape on evolution of particle crushing and characteristic of shear behavior of granular soil, direct shear test was simulated by using DEM (Discrete Element Method). Six particle shapes were generated by clump and cluster model built in PFC (Particle Flow Code). The results of direct shear test for six particle shapes were compared and analyzed with those for circular particle shape. The results of numerical tests showed a good agreement with those of experimental tests, thus the appropriateness of numerical modelling set in this study was proved. As for particle shape, more angular and rougher particle induced larger internal friction angle and more particle crushing than relatively round and smooth particle. When particles were crushed, crushing was concentrated on the shear band adjacent to the shear plane. Finally, it can be concluded that the numerical models suggested in this study can be used extensively for other studies concerning the shear behavior of granular soil including soil crushing.

Characteristics and Release Behaviors of Aromatic Poly(vinyl acetate) Nanoparticles Prepared by Emulsification-Diffusion Technique (유화-확산법에 의해 얻어진 폴리(비닐 아세테이트) 나노 방향 입자의 특성 및 방출 거동)

  • Sohn, Sung-Ok;Lee, So-Min;Kim, Yun-Mi;Ghim, Han-Do
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.177-183
    • /
    • 2007
  • In this study, nano-sized poly(vinyl acetate) (PVAc) particles containing lavender oil as a core material were prepared by using emulsification-diffusion method. Effects of experimental parameters on the characteristics and the release behavior were examined with a field emission- scanning electron microscope, an electrophoretic light scattering spectrophotometer, a visible spectrophotometer and a high performance liquid chromatography The resulting aromatic particles could be prepared in nano-sized globular shapes with the mean particle size of 224 nm by controlling the experimental conditions. From the evaluation of release properties of aromatic PVAc nanoparticles with or without PVA coating, it was found that the aromatic particles coated with PVA show more sustaining and stable release behaviors. Our research on aromatic PVAc nanoparticles could be applied for durable fragrant finishing for textiles, leather products and so on.

Shear behavior at the interface between particle and non-crushing surface by using PFC (PFC를 이용한 입자와 비파쇄 평면과의 접촉면에서의 전단 거동)

  • Kim, Eun-Kyung;Lee, Jeong-Hark;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.293-308
    • /
    • 2012
  • The shear behavior at the particle/surface interface such as rock joint can determine the mechanical behavior of whole structure. Therefore, a fundamental understanding of the mechanisms governing its behavior and accurately estimation of the interface strength is essential. In this paper, PFC, a numerical analysis program of discrete element method was used to investigate the effects of the surface roughness on interface strength. The surface roughness was characterized by smooth, intermediate, and rough surface, respectively. In order to investigate the effects of particle shape and crushing on particle/surface interface behavior, one ball, clump, and cluster models were created and their results were compared. The shape of particle was characterized by circle, triangle, square, and rectangle, respectively. The results showed that as the surface roughness increases, interface strength and friction angle increase and the void ratio increases. The one ball model with smooth surface shows lower interface strength and friction angle than the clump model with irregular surface. In addition, a cluster model has less interface strength and friction angle than the clump model. The failure envelope of the cluster model shows non-linear characteristic. From these findings, it is verified that the surface roughness and particle shape effect on the particle/surface interface shear behavior.

Numerical Analysis on Plasma Particles inside Electro-magnetic Field Using Particle-in-cell Method (Particle-in-cell 기법을 이용한 전자기장내 플라즈마 입자의 거동 해석)

  • Han, Doo-Hee;Joe, Min-Kyung;Shin, Junsu;Sung, Hong-Gye;Kim, Su-Kyum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.932-938
    • /
    • 2017
  • Particle-in-cell method which blends Eulerian grids and Lagrangian particle is utilized to solve simplified hall-effect thruster. Since this study individually tracks not only neutrons and ions but also electrons, message passing interface(mpi) scheme is adopted for parallel computer cluster. Helical movement of an electron cloud in constant magnetic field is validated comparing with an exact solution. A plasma in radial magnetic field and axial electric field in a reaction cylinder is established. Electrons do double helix movement and are well anchored in a cylinder. Ionization of neutrons by impact with high-speed electrons generates ion particles. They are accelerated by axial electric field, which forms a plume of a plasma-effect thruster.