• Title/Summary/Keyword: 입자운동

Search Result 363, Processing Time 0.034 seconds

The Effects of Small Group Drawing in Learning the Particulate Nature of Matter (물질의 입자성에 대한 학습에서 소집단 그림 그리기의 효과)

  • Han, Jae-Young;Kim, Hun-Sik;Kim, Bo-Kyung;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.7
    • /
    • pp.721-727
    • /
    • 2005
  • This study investigated the effects of small group drawing in learning the concepts of particulate nature of matter. Three classes of seventh graders (N = 126) at a coed middle school were randomly assigned to a pair drawing group, an individualistic drawing group, and a control group. The students were taught the 'three states of matter' and 'motion of molecules' for eight class periods. Prior to these classes, student self-efficacy, learning motivation, and attitude toward science instruction were examined. After instruction, tests assessing achievement, conception, learning motivation, and attitude toward science instruction were administered. Two-way ANCOVA results revealed that scores of achievement and conception for the pair drawing group were significantly higher than those for the control group. However, scores of the three groups did not significantly differ in learning motivation and attitude toward science instruction. Furthermore, no significant interactions surfaced between instruction and the level of self-efficacy in all dependent variables.

The Influences of Computer-Assisted Instruction Emphasizing the Particulate Nature of Matter and Problem-Solving Strategy on High School Students' Learning in Chemistry (물질의 입자성과 문제 해결 전략을 강조한 컴퓨터 보조 수업이 고등학생들의 화학 학습에 미치는 효과)

  • Noh, Tae-Hee;Kim, Chang-Min;Cha, Jeong-Ho;Jeon, Kyung-Moon
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.3
    • /
    • pp.337-345
    • /
    • 1998
  • This study examined the influences of computer-assisted instruction(CAl) upon high school students' conceptual understanding, algorithmic problem solving ability, learning motivation, and attitudes toward chemistry instruction. CAl programs were designed to supply animated molecular motions for emphasizing the particulate dynamic nature of matter and immediate feedbacks according to students' response types at each stage of four stage problem-solving strategy(understanding, planning, solving, and reviewing). The CAl and control groups (2 classes) were selected from a girls high school in Seoul, and taught about gas law for four class hours. Data analysis indicated that the students at the CAl group scored significantly higher than those at the control group in the tests on conceptual understanding and algorithmic problem solving ability. In addition, the students at the CAl group performed significantly better in the tests on the learning motivation and attitudes toward chemistry instruction.

  • PDF

Sedimentation Pattern in a Macrotidal Bay (Namhaepo Bay), West coast of Korea (한국 서해안 대조차 만(남해포만)에서의 퇴적양상)

  • LEE, SANG-DO;PARK, SOO-CHUL
    • 한국해양학회지
    • /
    • v.26 no.4
    • /
    • pp.332-339
    • /
    • 1991
  • The sedimentation pattern in Namhaepo Bay, a macrotidal coastal embayment of western Korea, was investigated by means of analysing high-resolution seismic profiles, sediment samples, and tidal currents. Recent sediments up to 20 m which overlie the irregular surface of the acoustic basement. The sediments consist mainly of sandy silt and silt; the mean grain size of these sediments ranges from 4 to 5.5 phi, showing a shoreward-fining distribution pattern. This distribution pattern agrees are largely reversed during ebb, with a maximum velocity of 39 cm/sec. The calculated shear velocity of the tidal currents at sea bed ranges from 0.5 to 3.3 cm/sec during flood and from 0.7 to 2.5 cm/sec during ebb. The mean values of these velocities exceed the critical shear velocity for the silt particles. The data suggest that the tidal currents play an important role in the transportation and deposition of sediments in the bay and the surface topography of the sea floor is largely deter-mined by tidal sedimentation.

  • PDF

Study on Hindered Diffusion of Single Polyelectrolyte Chain in Micro-Pores by Employing Brownian Dynamics Simulations (브라운 동력학 시뮬레이션에 의한 미세기공에서 단일한 다가전해질 사슬의 제한확산 연구)

  • 전명석;곽현욱
    • Membrane Journal
    • /
    • v.12 no.4
    • /
    • pp.207-215
    • /
    • 2002
  • The hindered diffusion in confined spaces is an important phenomenon to understand in a micro-scale the filtration mechanism determined by the particle motion in membrane pores. Compared to the case of spherical colloids, both the theoretical investigations and the experiments on the hindered diffusion of polyelectrolytes is actually more difficult, due to lots of relevant parameters resulting from the complicated conformational properties of the polyelectrolyte chain. We have successfully performed the Brownian dynamics simulations upon a single polyeiectrolyte confined in a slit-like pore, where a coarse-grained bead-spring model incorporated with Debye-Huckel interaction is properly adopted. For the given sizes of both the polyelectrolyte and the pore width, the hindered diffusion coefficient decreases as the solution ionic concentration decreases. It is evident that a charge effect of the pore wall enhances the hindered diffusion of polyelectrolyte. Simulation results allow us to make sense of the diffusive transport through the micro-pore, which is restricted by the influences of the steric hindrance of polyelectrolytes as well as the electrostatic repulsion between the polyelectrolytes and pore wall.

The Effect of Bottom Gap Size of Submerged Obstacle on Downstream Flow Field (수중 장애물의 하부틈새 크기가 하류 유동장에 미치는 영향)

  • Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.333-338
    • /
    • 2008
  • The coastal zone is a delicate and dynamic area in which the majority of a water kinetic energy is dissipated. These processes are subsequent to the transport of the beach materials. In comparison to emerged breakwaters, submerged structures permit the passage of some wave energy and in turn allow for circulation along the shoreline zone. This research aims to examine the beach erosion prevention capability of submerged structure by laboratory model. The flow characteristics behind a submerged obstacle with bottom gap were experimentally investigated at Re = $1.2{\times}10^4$ using the two-frame PIV(CACTUS 2000) system. Streamline curvature field behind the obstacle has been obtained by using the data of time-averaged mean velocity information. And the large eddy structure in the separated shear layer seems to have signification influence on the development of the separated shear layer. As bottom gap size increases, the recirculation occurring behind the obstacle moves toward downstream and its strength is weakened.

  • PDF

Measurement of the Flow Field Around a Quadcopter in Vertical Descending Flight (수직 하강 비행 조건에서의 쿼드콥터 주위의 유동장 계측)

  • Kwon, Min-Jeong;Kwon, Ki-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.359-367
    • /
    • 2018
  • The vortex ring state that occurs during the descending flight of a rotorcraft generates a circulating flow like a donut near the rotating surface, and it often causes a rotorcraft fall due to loss of thrust. In this paper, we have physically identified the flow field in the vortex ring state of the quadcopter, one of the types of unmanned aerial vehicles. The descending flight of the quadcopter was simulated in a 1m subsonic wind tunnel of the Korea Aerospace Research Institute(KARI) and the Particle Image Velocimetry(PIV) was used for the flow field measurement. The induced velocity in the hovering state is estimated by using the momentum theory and the test was carried out in the range of descent rate at which the vortex ring condition could be caused. The development and the direction of the vortex ring were confirmed by the measurement of the flow field according to not only the descent rate but also propeller separation distance. In addition, the results of the study show the vortex ring state can be predicted sufficiently by measuring the flow velocity around the quadcopter.

Study on Critical_Allowable Shear Stress of Filling Rocks With Mattress Revetment (호안용 매트리스내 채움재의 한계_허용 전단응력에 관한 연구)

  • Bae, Sang-Soo;Lee, Seung-Yoon;Jee, Hong-Kee
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • Critical and allowable shear stress acting on the mattress revetment, is presented in this study. First of all, shear stress at each spot is computed when the hydraulic power act on the waterway. Secondly, median diameter of the filling rocks is computed using shear stress and Shields coefficient which are used to decide the critical motion of the particle. Finally, the range of critical and allowable shear stress is estimated which meet the particle stability and indicated that the mattress is a stable hydraulic structure in comparison with the riprap. Therefore the required median diameter of riprap is three times higher than that of mattress. Contrarily, this study also analyzed that resisting power of mattress to shear stress is three times higher than that of riprap on the same size.

Study on Establishing a Blast Guideline for Securing an Underground Crusher Room from Ground Vibrations (지하 조쇄실의 진동 안정성 확보를 위한 발파지침 수립 연구)

  • Choi, Byung-Hee;Ryu, Chang-Ha;Kim, Hyun-Woo;Kang, Myoung-Soo
    • Explosives and Blasting
    • /
    • v.33 no.2
    • /
    • pp.15-24
    • /
    • 2015
  • In general, blast vibrations could make underground cavern unstable by causing relative movements between the surrounding rock blocks that are divided by discontinuities such as joints and faults around the cavern. In the study, a blast guideline was established to obtain the stability of a large-scale cavern for underground crusher room in an open pit limestone mine in Korea. The guideline was suggested in the form of a standard calculation method of the maximum charge per delay for a safe blast. The allowable level of peak particle velocity for the cavern was determined based on the result of a numerical analysis using FLAC2D. The ground vibration data required for the study was obtained from field measurements.

Analysis of Effectiveness of Tandem Oil Fences (이중유벽의 유효성에 관한 해석)

  • Han Dong Gi;Lee Choung Mook
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.1
    • /
    • pp.38-46
    • /
    • 2001
  • To assess the oil-containment effectiveness of tandem oil fences placed in currents, the movement of oil droplets in the fore and aft region of the fences is investigated by experimental and numerical methods. The effect of the flexibility of the fence skirt of single fence on the fence effectiveness is also investigated. Laboratory experiment is conducted to trace the path of a spherical solid particle of equivalent density to an oil droplet which was released in a uniform stream ahead of a model oil fence. Depending upon the releasing position and the flow condition there, it was observed that the particle floated up to the free surface, collided with the fence, or escaped below the fence. By analyzing the droplet trajectories, a numerical method is developed to predict the region ahead of the fore fence where an oil droplet initiating its motion eventually escapes beneath the fence. The effect of the relative sizes of the drafts of the fore and aft fences, the fence separation, and the bottom depth of the sea bed on the effectiveness of tandem fences is investigated using the numerically obtained trajectories of oil droplets.

  • PDF

Numerical Simulation of Bullet Impact for Fuel Cell of Rotorcraft using Smoothed Particle Hydrodynamics (입자법을 이용한 회전익항공기 연료셀 피탄 수치모사)

  • Kim, Hyun-Gi;Kim, Sung Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2553-2558
    • /
    • 2014
  • Military rotorcraft should be designed taking into account the condition of the fuel cell bullet impact. The internal fluid pressure, stress of metal fitting and fuel cell, bullet kinetic energy can be included as the design factor for the fuel cell. The best way to obtain the important design data is to conduct the verification test with actual product. But, the verification test requires huge cost and long-term effort. Moreover, there is high risk to fail because of the sever test condition. Thus, the numerical simulation is required to reduce the risk of trial-and-error together with prediction of the design data. In the present study, the bullet impact simulation based on SPH(smoothed particle hydrodynamics) is conducted with the commercial package, LS-DYNA. As the result of the numerical simulation, the internal pressure of fuel cell is calculated as 350~360MPa and the equivalent stress caused by hydro-ram effect is predicted as 260~350MPa on metal fittings.