• Title/Summary/Keyword: 입상슬러지

Search Result 45, Processing Time 0.017 seconds

Granulation and Characteristics of Sludges in the Combined SHARON/ANAMMOX Processes (SHARON/ANAMMOX 결합공정에서 슬러지의 입상화와 특성)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.300-307
    • /
    • 2006
  • The combined SHARON (Single reactor system for High ammonium Removal Over Nitrite)-ANAMMOX (Anaerobic ammonium oxidation) reactor were operated in mesophilic condition ($35^{\circ}C$). In this study, microbial granulation and characteristics of SHARON and ANAMMOX sludges were investigated using settling test, Scanning Electron Microscopy (SEM) and Fluorescence In Situ Hybridization (FISH). In SHARON reactor, Aerobic granulation with diameter of 1.5~2.5 mm was accomplished but aerobic granulation was weaker than anaerobic granular sludge. Initial seed sludge of ANAMMOX reactor was used as attached media for biofilm growth. ANAMMOX sludge was more compact and rounder rather than seed sludge. Though ANAMMOX sludge has high activity, it has lower settling ability than the seed granule. The color of ANAMMOX sludge was changed from dark to redish brown granular with diameter of 1~2 mm. In FISH of ANAMMOX sludge, high fraction of Candidatus B. stuttgartiensis which paid great role of nitrogen conversion was detected. Also, FISH results reveals that ANAMMOX bacteria inhabit at inner parts near surface, having advantages in utilization of substrates and protection from oxygen inhibition.

Qualitative and Quantitative Analysis of Microbial Community Structure in the Sequencing Batch Reactor for Enriching ANAMMOX Consortium (연속회분식 반응기를 이용한 혐기성 암모늄 산화균 농후배양에서의 정성 및 정량적 미생물 군집구조 분석)

  • Bae, Hyo-Kwan;Jung, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.919-926
    • /
    • 2009
  • Enrichment of anaerobic ammonium oxidation (ANAMMOX) bacteria is the essential step for operating full-scale ANAMMOX bioreactor because adding a significant amount of seeding sludge is required to stabilize the ANAMMOX reactor. In this study, the enrichment of ANAMMOX bacteria from an activated sludge using sequencing batch reactor was conducted and verified by analyzing changes in the microbial community structure. ANAMMOX bacteria were successfully enriched for 70 days and the substrate removal efficiencies showed 98.5% and 90.7% for $NH_4\;^+$ and $NO_2\;^-$ in the activity test, respectively. The phylogenetic trees of Planctomycetes phylum showed that the diverse microbial community structure of an activated sludge was remarkably simplified after the enrichment. All 36 clones, obtained after the enrichment, were affiliated with ANAMMOX bacteria of Candidatus Brocadia (36%) and Candidatus Anammoxoglobus (64%) genera. The quantification using real-time quantitative PCR (RTQ-PCR) revea ed that the 16S rDNA concentration of ANAMMOX bacteria was 74.8% compared to the granular ANAMMOX sludge obtained from an upflow ANAMMOX sludge bed reactor which had been operated for more than one year. The results of molecular analysis supported that the enriched sludge could be used as a seeding sludge for a full-scale ANAMMOX bioreactor.

Effectiveness of Zeolite and Granular Activated Carbon Addition before Starvation for the Performance Recovering of the Sludge Settleability and Removal Efficiency (Starvation전 제올라이트 및 입상활성탄의 주입이 슬러지 침강성 및 오염물질 처리효율 회복에 미치는 영향)

  • Oh, Hye-Ran;Kim, Sang-Soo;Moon, Byung-Hyun;Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.234-240
    • /
    • 2010
  • The effectiveness of adding powdered zeolite and granular activated carbon (GAC) before starvation into biological reactor for recovering its performances was investigated. Two types of carrier addition in Sequencing Batch Reactor (SBR) system for non-saline and saline wastewater were evaluated after starvation periods. During the experiment, settleablity (SVI), floc size, fractal dimension, $COD_{Mn}$, T-N, T-P removal efficiencies and recovery time were monitored. When the wastewater feeding was resumed after starvation period for 5days, the SVI increased at the beginning of resumption and then decreased with time in both types. And the larger the floc size and fractal dimension of floc, the more increased removal efficiency for $COD_{Mn}$, T-N and T-P was also. Its performance recovery was strongly correlated with floc size and fractal dimension of activated sludge. After resuming the wastewater feeding, the SVI, floc size, fractal dimension, $COD_{Mn}$, T-N, T-P removal efficiency of SBR with carrier improved and reached its initial value faster compared to those of SBR without carrier.

Characteristics of Aerobic Granular Activated Sludge According to Electron Acceptors in Sequencing Batch Reactor Process (SBR공정에서 전자수용체에 따른 호기성 입상활성슬러지의 공정별 특성)

  • Kim, I-Tae;Lee, Hee-Ja;Bae, Woo-Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.480-487
    • /
    • 2004
  • This study was conducted to find the effect of electron acceptors on the formation of granular sludge by using four different types of electron acceptors. The phosphorous uptake, denitrification, and sulfate reduction in anoxic modes were simultaneously occured because of the presence of the polyphosphate accumultating organism(PAO) that utilize nitrate and sulfate as an electron acceptor in the anoxic zone. Denitrirying phosphorous removal bacteria(DPB) was enriched under anaerobic/anoxic/aerobic condition with a nitrate as an electron acceptor, and desulfating phosphorous removal bacteria(DSPB) was enriched under anaerobic/anoxic/aerobic condition with a sulfate as an electron acceptor. Polyphosphate accumulating organism(PAO) were enriched in the anaerobic/aerobic SBR. PAO took up acetate faster than DPB and DSPB during the aerobic phase. The sludge with nitrate and sulfate as an electron acceptors grew as a granules which possessed high activity and good settleability. In the anaerobic/aerobic modes, typical floccular growth was observed. In the result of bench-scale experiment, simultaneous reactions of phosphorus uptake, denitrification and sulfate reduction were observed under anoxic condition with nitrate and sulfate as an electron acceptors. These results demonstrated that the anaerobic/anoxic modes with nitrate and sulfate as an electron acceptors played an important role in the formation of the sludge granulation.

Improved Organic Removal Efficiency in Two-phase Anaerobic Reactor with Submerged Microfiltration System (침지형 정밀여과시스템을 결합한 이상 혐기성 시스템에 의한 유기물 제거율의 향상)

  • Jung, Jin-Young;Chung, Yun-Chul;Lee, Sang-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.629-637
    • /
    • 2000
  • A two-phase anaerobic reactor with a submerged microfiltration system was tested for its ability to produce methane energy from organic wastewater. A membrane separation system with periodic backwashing with compressed air was submerged in the acidogenic reactor. The cartridge type of microfiltration (MF) membrane with pore size of $0.5{\mu}m$ (mixed esters of cellulose) was tested. An AUBF (Anaerobic Upflow Sludge Bed Filter: 1/2 packed with plastic media) was used for the methanogenic reactor. Soluble starch was used as a substrate. The COD removal was investigated for various organic loading with synthetic wastewater of 5,000 mg starch/L. When the hydraulic retention time (HRT) of the acidogenic reactor was changed from 10 to 4.5 days, the organic loading rate (OLR) varied from 0.5 to $1.0kg\;COD/m^3-day$. When the HRT of the methanogenic reactor was changed from 2.8 to 0.5 days, the OLR varied from 0.8 to $5.8kg\;COD/m^3-day$. The acid conversion rate of the acidogenic reactor was over 80% in the 4~5 days of HRT. The overall COD removal efficiency of the methanogenic reactor showed over 95% (effluent COD was below 300 mg/L) under the highly fluctuating organic loading condition. A two-phase anaerobic reactor showed an excellent acid conversion rate from organic wastewater due to the higher biomass concentration than the conventional system. A methanogenic reactor combined with sludge bed and filter, showed an efficient COD and SS removal.

  • PDF