• Title/Summary/Keyword: 입사 방향성

Search Result 154, Processing Time 0.019 seconds

Blood Vessel Strain Imaging Using Linear Array Transducer (선형 트랜스듀서를 이용한 혈관 변형률 영상법)

  • Ahn, Dong-Ki;Jeong, Mok-Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.880-890
    • /
    • 2010
  • The intrasvascular ultrasound (IVUS) imaging technique is used to diagnose cerebrovascular diseases such as stroke. Recently, elasticity imaging methods have been investigated to diagnose blood clots attached to blood vessel intima. However, the IVUS imaging technique is an invasive method that requires a transducer to be inserted into blood vessel. In this paper, strain images are obtained of blood clots attached to blood vessel intima with data acquired from outside the blood vessel using a linear array transducer. In order to measure the displacement of blood vessel accurately, experimental data are acquired by steering ultrasound beams so that they can intersect the blood vessel wall at right angles. The acquired rf data are demodulated to the baseband. The resulting complex baseband signals are then processed by an autocorrelation algorithm to compute the blood vessel movement and thereby produce strain image. This proposed method is verified by experiments on a plastic blood vessel mimicking phantom. The efficacy of the proposed method was verified using a home-made blood vessel mimicking phantom. The blood vessel mimicking phantom was constructed by making a 6 mm diameter hollow cylinder inside it to simulate a blood vessel and adhering 2 mm thick soft plaque to the inner wall of the hollow cylinder. The RF data were acquired using a clinical ultrasound scanner (Accuvix XQ, Medison, Seoul. Korea) with a 7.5 MHz linear array transducer by steering ultrasound beams in steps of $1^{\circ}$ from $-40^{\circ}$ to $40^{\circ}$ for a total of 81 angles. Experimental results show that the plaque region near the blood vessel wall is softer than background tissue. Although the imaging region is restricted due to the limited range of angles for which scan lines are perpendicular to the wall, the feasibility of strain imaging is demonstrated.

Fabrication of Label-Free Biochips Based on Localized Surface Plasmon Resonance (LSPR) and Its Application to Biosensors (국소 표면 플라즈몬 공명 (LSPR) 기반 비표지 바이오칩 제작 및 바이오센서로의 응용)

  • Kim, Do-Kyun;Park, Tae-Jung;Lee, Sang-Yup
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In the past decade, we have observed rapid advances in the development of biochips in many fields including medical and environmental monitoring. Biochip experiments involve immobilizing a ligand on a solid substrate surface, and monitoring its interaction with an analyte in a sample solution. Metal nanoparticles can display extinction bands on their surfaces. These charge density oscillations are simply known as the localized surface plasmon resonance (LSPR). The high sensitivity of LSPR has been utilized to design biochips for the label-free detection of biomolecular interactions with various ligands. LSPR-based optical biochips and biosensors are easy to fabricate, and the apparatus cost for the evaluation of optical characteristics is lower than that for the conventional surface plasmon resonance apparatus. Furthermore, the operation procedure has become more convenient as it does not require labeling procedure. In this paper, we review the recent advances in LSPR research and also describe the LSPR-based optical biosensor constructed with a core-shell dielectric nanoparticle biochip for its application to label-free biomolecular detections such as antigen-antibody interaction.

Monte Carlo Simulations of Detection Efficiency and Position Resolution of NaI(TI)-PMT Detector used in Small Gamma Camera (소형 감마카메라 제작에 사용되는 NaI(TI)- 광전자증배관 검출기의 민감도와 위치 분해능 특성 연구를 위한 몬테카를로 시뮬레이션)

  • Kim, Jong-Ho;Choi, Yong;Kim, Jun-Young;Im, Ki-Chun;Kim, Sang-Eun;Choi, Yeon-Sung;Joo, Kwan-Sik;Kim, Young-Jin;Kim, Byung-Tae
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.67-76
    • /
    • 1997
  • We studied optical behavior of scintillation light generated in NaI(TI) crystal using Monte Carlo simulation method. The simulation was performed for the model of NaI(TI) scintillator (size: 60 mm ${\times}$ 60 mm ${\times}$ 6 mm) using an optical tracking code. The sensitivity as a function of surface treatment (Ground, Polished, Metal-0.95RC, Polished-0.98RC, Painted- 0.98RC) of the incident surface of the scintillator was compared. The effects of NaI(TI) scintillator thickness and the refractive index of light guide optically coupling between the NaI(TI) scintillator and photomultiplier tube (PMT) were simulated. We also evaluated intrinsic position resolution of the system by calculating the spread of scintillation light generated. The sensitivities of the system having the surface treatment of Ground, Polished, Metal-0.95RC, Polished-0.98RC and Painted-0.98RC were 70.9%, 73.9%, 78.6%, 80.1% and 85.2%, respectively, and the surface treatment of Painted-0.98RC allowed the highest sensitivity. As increasing the thickness of scintillation crystal and light guide, the sensitivity of the system was decreased. As the refractive index of light guide increases, the sensitivity was increased. The intrinsic position resolution of the system was estimated to be 1.2 mm in horizontal and vertical directions. In this study, the performance of NaI(TI)-PMT detector system was evaluated using Monte Carlo simulation. Based on the results, we concluded that the NaI(TI)-PMT detector array is a favorable configuration for small gamma camera imaging breast tumor using Tc-99m labeled radiopharmaceuticals.

  • PDF

Development of a Thermoplastic Oral Compensator for Improving Dose Uniformity in Radiation Therapy for Head and Neck Cancer (두경부암 방사선치료 시 선량 균일도 향상을 위한 Thermoplastic 구강 보상체의 개발)

  • Choi, Joon-Yong;Won, Young-Jin;Park, Ji-Yeon;Kim, Jong-Won;Moon, Bong-Ki;Yoon, Hyong-Geun;Moon, Soo-Ho;Jeon, Jong-Byeong;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.269-278
    • /
    • 2012
  • Aquaplast Thermoplastic (AT) is a tissue-equivalent oral compensator that has been developed to improve dose uniformity at the common boundary and around the treated area during radiotherapy in patients with head and neck cancer. In order to assess the usefulness of AT, the degree of improvement in dose distribution and physical properties were compared to those of oral compensators made using paraffin, alginate, and putty, which are materials conventionally used in dental imprinting. To assess the physical properties, strength evaluations (compression and drop evaluations) and natural deformation evaluations (volume change over time) were performed; a Gafchromic EBT2 film and a glass dosimeter inserted into a developed phantom for dose verification were used to measure the common boundary dose and the beam profile to assess the dose delivery. When the natural deformation of the oral compensators was assessed over a two-month period, alginate exhibited a maximum of 80% change in volume from moisture evaporation, while the remaining tissue-equivalent properties, including those of AT, showed a change in volume that was less than 3%. In a free-fall test at a height of 1.5 m (repeated 5 times as a strength evaluation), paraffin was easily damaged by the impact, but AT exhibited no damage from the fall. In compressive strength testing, AT was not destroyed even at 8 times the force needed for paraffin. In dose verification using a glass dosimeter, the results showed that in a single test, the tissue-equivalent (about 80 Hounsfield Units [HU]) AT delivered about 4.9% lower surface dose in terms of delivery of an output coefficient (monitor unit), which was 4% lower than putty and exhibited a value of about 1,000 HU or higher during a dose delivery of the same formulation. In addition, when the incident direction of the beam was used as a reference, the uniformity of the dose, as assessed from the beam profile at the boundary after passing through the oral compensators, was 11.41, 3.98, and 4.30 for air, AT, and putty, respectively. The AT oral compensator had a higher strength and lower probability of material transformation than the oral compensators conventionally used as a tissue-equivalent material, and a uniform dose distribution was successfully formed at the boundary and surrounding area including the mouth. It was also possible to deliver a uniformly formulated dose and reduce the skin dose delivery.