• Title/Summary/Keyword: 입사 방향성

Search Result 154, Processing Time 0.025 seconds

수직 정렬된 실리콘 와이어 어레이의 제작 방법과 동심원형 p-n 접합 태양전지의 제조 및 동향

  • Kim, Jae-Hyeon;Baek, Seong-Ho;Jang, Hwan-Su;Choe, Ho-Jin;Kim, Seong-Bin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.12.2-12.2
    • /
    • 2010
  • 반도체 소자, 바이오 센서, 태양전지 등에서 집적도 및 소자 성능 향상을 위해서 최근 실리콘 소재를 위주로 한 수직 정렬형 와이어 어레이와 같은 3차원 구조의 소재에 대한 연구가 많이 진행되고 있다. 깊은 반응성 이온 식각법(DRIE: Deep Reactive Ion Etching)과 같은 건식 식각법으로 종횡비가 높은 실리콘 와이어 어레이를 제작할 수 있지만 시간과 공정비용이 많이 소요된다는 단점이 있고 양산성이 없다. 이를 극복하기 위해서 VLS (Vapor-Liquid-Solid)방법이 연구되고 있지만 촉매로 사용되는 금속의 오염으로 인한 소자 성능의 저하를 피할 수가 없다. 본 연구진에서 연구하는 있는 전기화학적 식각법을 사용하면 이러한 문제를 극복하고 매우 정렬이 잘 된 실리콘 와이어 어레이를 제작할 수 있으며 최적 조건을 정립하면 균일하고 재현성 있는 다양한 종횡비의 기판 수직형 실리콘 와이어 어레이를 제작할 수 있다. 또한, 귀금속 촉매 식각법은 금속 촉매를 사용하여 식각을 하지만 VLS 방법과 달리 Top-down 방법을 사용하기 때문에 최종 공정에서 용액에 담구어 귀금속을 식각하여 제거 하면 귀금속 촉매가 실리콘을 오염시키는 일은 배제할 수 있다. 귀금속 촉매 식각법의 경우 사용되는 촉매의 다양화, 포토리소그래피 방법, 그리고 식각 용액의 조성 변화에 따라 다양한 형상의 와이어 어레이를 제작할 수 있으며 이에 대한 결과를 소개하고자 한다. 3차원 실리콘 와이어 어레이를 사용하여 동심원형 p-n접합 와이어 어레이를 제작하면 소수캐리어의 확산거리가 짧아도 짧은 동심원 방향으로 캐리어를 포집할 수 있고 태양광의 입사는 와이어 어레이의 수직 방향이므로 태양광의 흡수도 효율적으로 할 수 있기 때문에 실리콘의 효율 향상을 달성할 수 있다. 이에 대한 본 연구진의 연구결과 및 최근 연구 동향을 발표하고자 한다.

  • PDF

Shape Effects of Cap Concrete on Wave Transmission in Permeable Breakwaters (투수성 방파제 상부구조물의 형상효과에 관한 연구)

  • 권혁민;최한규;김태인
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.4
    • /
    • pp.217-222
    • /
    • 1991
  • Hydralic model experiments for permeable breakwaters with three different shapes of cap concrete were carried out in a two-dimensional wave channel to investigate the shape effects of cap concrete on transmission rate of the incident waves over the breakwaters. The model test results show that energy damping effects are significant in the following order; cap concrete with dissipation holes and apron, cap concrete with apron only, and cap concrete without dissipation holes and apron. It is concluded that the significant damping effects are due to energy dissipation of the incident wave as they pass through the holes and the apron.

  • PDF

The Design of Array Geometry in 2-D Multiple Baseline Direction Finding (2차원 멀티베이스라인 방향탐지 배열 구조 설계)

  • Park, Cheol-Sun;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.988-995
    • /
    • 2006
  • In this Paper, we Present a nonharmonic may geometry design method using Euclidan minimum distance function in difference Phase spaces for 2-D (azimuth/elevation) multiple baseline antenna may which has a way to reduce the number of sensor antennas while maintaining accurate DOA estimate. The major advantages of our approach is that even the shortest interelement spacing can be larger than half-wavelength and is not limit13d to linear and it can be applied successfully to any array configuration. In multiple signals impinging situation, the performance simulation results of superresolution algorithms shows the effectiveness of the proposed method. Also the 2-D asymmetric may using the Proposed method is designed and the Performance of the manufactured away through the experimental test is verified.

A Study on Signal Sub Spatial Method for Removing Noise and Interference of Mobile Target (이동 물체의 잡음과 간섭제거를 위한 신호 부 공간기법에 대한 연구)

  • Lee, Min-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.3
    • /
    • pp.224-228
    • /
    • 2015
  • In this paper, we study the method for desired signals estimation that array antennas are received signals. We apply sub spatial method of direction of arrival algorithm and adaptive array antennas in order to remove interference and noise signal of received antenna signals. Array response vector of adaptive array antenna is probability, it is correctly estimation of direction of arrival of targets to update weight signal. Desired signals are estimated updating covariance matrix after moving interference and noise signals among received signals. We estimate signals using eigen decomposition and eigen value, high resolution direction of arrival estimation algorithm is devided signal sub spatial and noise sub spatial. Though simulation, we analyze to compare proposed method with general method.

Characteristic of Wave Diffraction and Reflection for Irregular Waves in SWASH Model Around Small Port Structures (소규모 항만 구조물 주변에서 불규칙파에 대한 SWASH 모형의 반사 및 회절)

  • Kwon, Kyong Hwan;Park, Chang Wook;Park, Il Heum;Kim, Jong Hoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.468-477
    • /
    • 2019
  • The numerical model of Boussinesq approximation, which is mainly used for evaluating the port calmness due to the irregular waves, has a limit of applicability of lattice size in ports such as marinas with narrow port openings of around 30m. The SWASH model controls the partial reflection according to the depth, porosity coefficient and structure size when applying the reflected wave incident on the structure and terrain. In this study, the partial reflection evaluation at the front of the structure according to the bottom shape and the shape of the structure are examined. In order to evaluate the reproducibility of the model due to the diffraction waves entering the term, the area of incidence at right angles and inclination of the structure is constructed and compared with the diffraction theory suggested by Goda et al. (1978). The experimental results of the sectional structure reflectances calculated as the depth mean show reflectances similar to the approximate values of the reflectances presented by Stelling and Ahrens (1981). It is considered that the reflected wave is well reproduced according to the control of the reflected wave at the boundary and the shape and topography of the structure. Compared with previous studies to examine the diffraction of the wave incident from the breakwater opening, the wave incidence angle and the shape of the diffraction wave are very similar to the theoretical values, but both oblique and rectangular incidence In the case where the direction concentration is small, the diffraction degree is underestimated in some sections with the crest ratio of 0.5 to 0.6.

Level Set based Topological Shape Optimization of Phononic Crystals (음향결정 구조의 레벨셋 기반 위상 및 형상 최적설계)

  • Kim, Min-Geun;Hashimoto, Hiroshi;Abe, Kazuhisa;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.549-558
    • /
    • 2012
  • A topology optimization method for phononic crystals is developed for the design of sound barriers, using the level set approach. Given a frequency and an incident wave to the phononic crystals, an optimal shape of periodic inclusions is found by minimizing the norm of transmittance. In a sound field including scattering bodies, an acoustic wave can be refracted on the obstacle boundaries, which enables to control acoustic performance by taking the shape of inclusions as the design variables. In this research, we consider a layered structure which is composed of inclusions arranged periodically in horizontal direction while finite inclusions are distributed in vertical direction. Due to the periodicity of inclusions, a unit cell can be considered to analyze the wave propagation together with proper boundary conditions which are imposed on the left and right edges of the unit cell using the Bloch theorem. The boundary conditions for the lower and the upper boundaries of unit cell are described by impedance matrices, which represent the transmission of waves between the layered structure and the semi-infinite external media. A level set method is employed to describe the topology and the shape of inclusions. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set function, which facilitates to handle complicated topological shape changes. Through several numerical examples, the applicability of the proposed method is demonstrated.

Design of Thermo-optic Switch with Low Power Consumption by Electrode Optimization (전극 구조의 최적화를 통한 저전력 열광학 스위치 설계)

  • Choi, Chul-Hyun;Kong, Chang-Kyeng;Lee, Min-Woo;Sung, Jun-Ho;Lee, Seung-Gol;Park, Se-Geun;Lee, El-Hang;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.5
    • /
    • pp.266-271
    • /
    • 2009
  • We designed a thermo-optic switch based on a directional coupler with not only a high extinction ratio but also significantly low power consumption. The switch operates by using the thermo-optic effect of the polymer which the refractive index changes by heating the electrode. If the electrode is not powered (OFF), the input light will be coupled completely to the other waveguide. When the electrode is powered at a certain level (ON), input light launched into the input waveguide will remain in that waveguide due to the lower index adjusted in the other waveguide. The switch based on the directional coupler was designed using the generalized extinction ratio curve and the lateral shift of the input waveguide. The coupling length is 1,610 ${\mu}m$ and the extinction ratios are -28 and -30 dB for ON and OFF states, respectively. The electrode structures were optimized by thermal analysis. The transported heat into the waveguide is increased, as the electrode width (w) is increased and the center distance between the electrode and the waveguide (d) is decreased. Also, because the heat generated in the electrode affects the other waveguide, the temperature difference between two waveguides is varied as the given w and d. There are specific conditions which have the maximum of the temperature difference. That of the temperature difference is increased as the width and the temperature of the electrode are increased. Especially, when the switch is designed using the condition with the maximum of the temperature difference for switching, the temperature of the electrode can be decreased. We expect this condition will be the novel method for the reduction of the power consumption in a thermo-optic switch.

Wave Simulation for Submarine Cable Route of Southwest Sea Offshore Wind Farm Using the SWAN Model (SWAN 모델을 이용한 서남해 해상풍력단지 해저케이블 경과지의 파랑 수치모의)

  • Ryu, Hwang-Jin;Kim, Sang-Ho;Kwoun, Chul-Hui;Cho, Kwang-Woo;Maeng, Jun-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.583-590
    • /
    • 2015
  • Submarine cable installation is essentials for grid connection between existing power grid and newly produced electricity which will be from offshore wind farm in Southwest sea area of Korea. Especially, submarine cable route and protection method is designed in order to ensure the economical efficiency, workability and stability of submarine cable installation. On this paper, we will give the basic information about the submarine cable route and protection method of offshore wind farm which will be built in Southwest sea area of Korea. For this, we have a numerical simulation at high and low tide based on the third-generation wave model SWAN(Simulating WAves Nearshore) using the long term wave data from Korea Institute of Ocean Science and Technology(KIOST). The results of the study, year mean Hs is 1.03m, Tz is 4.47s and dominant wave direction is NW and SSW When the incident wave direction is NW(Hs: 7.0 m, Tp: 11.76s), the distribution of shallow water design wave height Hs was calculated about 4.0~5.0m at high tide and 2.0~3.0m at low tide. When the incident wave direction is SSW(Hs: 5.84 m, Tp: 11.15s), the distribution of shallow water design wave height Hs was calculated about 3.5~4.5m at high tide and 1.5~2.5m at low tide. The wave direction on a dominant influence in the section of longitude UTM 249749~251349(about 1.6 km) and UTM 251549~267749(about 16.2 km) in the submarine cable route are each NW and SSW. Prominently, wave focusing phenomenon appears between Wi-do and Hawangdeung-do, in this sea area is showing a relatively high wave hight than the surrounding sea areas.

Reconstruction of the Wave Speed and Density from Reflection Coefficients by Downward Continuation Algorithm (하향연속 알고리즘에 의한 반사계수로부터의 속도 및 밀도값 복원)

  • Shon, Howoong;Suh, Mancheol
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.553-558
    • /
    • 1995
  • The purpose of this paper is recovery of the profiles of the wave speed and density from the reflection coefficients of the continuously layered acoustic medium with depth dependent density and wave speed at various angles of incidence. A downward continuation or layer stripping algorithm, which recursively reconstructs the medium in increasing depth and then strips away the effects of the reconstructed portion of the medium, is the method with fewer computations than integral equation procedures. This paper implements an improved downward continuation algorithm that uses reflection data at several angles of incidence and performs a least-squares fitting at each depth. The result is a considerable improvement in performance over the usual downward continuation algorithm.

  • PDF

Power Analysis According to Irradiation of PV System (태양광 시스템의 일사량에 따른 전력 패턴)

  • Hwang, Jun-Won;Park, Sang-Jun;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.240-240
    • /
    • 2009
  • 최근 10년간 우리나라의 에너지 소비는 매년 10[%]라는 세계 최고의 증가율을 기록하고 있으며 온실가스배출량 증가율 역시 세계 1 위를 기록하고 있다. 세계기후협약 이행이 늦추어지고는 있지만 머지않아 우리도 여기에 참여하지 않을 수 없는 형편이어서 대체에너지 개발의 필요성은 더욱 절실하게 요구되고 있는 실정이다. 11개 분야의 신 재생 어|너지 중에서 최근 가장 많은 관심을 갖고 있는 태양광 발전은 태양광을 직접 전기에너지로 변환시키는 기술로서 광을 조사시 광전효과에 의해 전기를 발생하는 원리를 이용한 발전방식이다. 따라서, 본 논문에서는 이러한 구성장치에 의해 넓은 부지가 필요하며 햇빛의 방향에 따라 또는 태양전지에 입사하는 일사량의 정도에 따라 많은 발전전력에 차이가 있으므로 태양광 발전의 경우 발전단가가 높고 효율이 낮기 때문에 일사량에 따른 전력을 측정하여 효율적인 발전에 필요한 조건을 알아 보기위해 2007년 1년간의 실증운전을 통한 일사량과 전력발생량을 비교 분석하였으며 또한 햇빛의 일사량은 시간대별, 일별, 월별, 년별로 각각 달리 측정되므로 각각의 일사량에 따른 전력패턴을 분석하여 태양광 발전에 필요한 일사량과 전력과의 상관관계를 연구하였다.

  • PDF