• Title/Summary/Keyword: 입력 벡터

Search Result 935, Processing Time 0.027 seconds

A Study on the DFT Process Using the Optical Matrix-Vector Multiplier (광매트릭스-벡터곱셈기를 이용한 DFT 처리에 관한 연구)

  • 최평석;박한규
    • The Journal of the Acoustical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.30-34
    • /
    • 1984
  • 본 논문에서는 인코히어런트광 매트릭스-벡터곱셈기를 이용하여 입력 데이터를 광학적으로 DFT 할 수 있는 방법을 연구하였다. DFT의 웨이팅함수를 매트릭스로 나타내어 본 논문에서 제시한 2 개의 성분 분할 방법을 이용하여 마스크상에 부호화하고 광매트릭스-벡터곱셈기내에 고정시켜서 입력 데이터와 광학적으로 곱하도록 하였다.

  • PDF

Car License Plate Extraction and Recognition Using Vertical/Horizontal Intensity Variation and Circular Pattern Vector (수직 및 수평 명암도 변화값과 원형 패턴벡터를 이용한 차량번호판 추출 및 인식 알고리즘)

    • The KIPS Transactions:PartB
    • /
    • v.8B no.2
    • /
    • pp.195-200
    • /
    • 2001
  • 본 논문에서는 실제 입력 차량 영상으로부터 명암도 변화 정보와 원형 패턴 벡터를 이용하여 차량 번호판을 인식하는 알고리즘을 제안하였다. 일반적으로 차량 영상에서는 번호판 영역에서 문자와 배경이 뚜렷하게 구별되고, 일정한 명암도 변화를 가지면서 번호판 이외의 다른 영역 보다 빌집도가 높은 특성이 있다. 따라서 본 논문에서는 이러한 성질을 이용하여 먼저 명암도 변화값을 사용하여 번호판을 추출하도록 하였으며 영상 입력 과정에서 외부 환경에 따라 차량 영상이 어둡거나 밝게 입력될 경우에도 동일한 추출 성능을 얻기 위하여 밝기 보정 과정을 수행하였다. 또한 추출된 번호판 영역으로부터 입력 문자의 크기, 이동 및 회전에 무관한 특성 추출을 위해 원형 패턴 벡터를 이용하여 차량 번호를 인식하도록 하였다. 제안한 알고리즘을 적용한 결과 번호판 추출이 가능하였으며 기존의 방법에 비해 계산 속도가 향상되어 실시간 처리의 가능성을 제시하였다.

  • PDF

Speaker-Adaptive Speech Synthesis based on Fuzzy Vector Quantizer Mapping and Neural Networks (퍼지 벡터 양자화기 사상화와 신경망에 의한 화자적응 음성합성)

  • Lee, Jin-Yi;Lee, Gwang-Hyeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.1
    • /
    • pp.149-160
    • /
    • 1997
  • This paper is concerned with the problem of speaker-adaptive speech synthes is method using a mapped codebook designed by fuzzy mapping on FLVQ (Fuzzy Learning Vector Quantization). The FLVQ is used to design both input and reference speaker's codebook. This algorithm is incorporated fuzzy membership function into the LVQ(learning vector quantization) networks. Unlike the LVQ algorithm, this algorithm minimizes the network output errors which are the differences of clas s membership target and actual membership values, and results to minimize the distances between training patterns and competing neurons. Speaker Adaptation in speech synthesis is performed as follow;input speaker's codebook is mapped a reference speaker's codebook in fuzzy concepts. The Fuzzy VQ mapping replaces a codevector preserving its fuzzy membership function. The codevector correspondence histogram is obtained by accumulating the vector correspondence along the DTW optimal path. We use the Fuzzy VQ mapping to design a mapped codebook. The mapped codebook is defined as a linear combination of reference speaker's vectors using each fuzzy histogram as a weighting function with membership values. In adaptive-speech synthesis stage, input speech is fuzzy vector-quantized by the mapped codcbook, and then FCM arithmetic is used to synthesize speech adapted to input speaker. The speaker adaption experiments are carried out using speech of males in their thirties as input speaker's speech, and a female in her twenties as reference speaker's speech. Speeches used in experiments are sentences /anyoung hasim nika/ and /good morning/. As a results of experiments, we obtained a synthesized speech adapted to input speaker.

  • PDF

An Enhanced Fuzzy ART Algorithm for The Identifier Recognition from Shipping Container Image (운송 컨테이너 영상의 식별자 인식을 위한 개선된 퍼지 ART 알고리즘)

  • 류재욱;김태경;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.365-369
    • /
    • 2002
  • 퍼지 ART 알고리즘에서 경계 변수는 패턴들을 클러스터링하는데 있어서 반지름 값이 되며 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 벡터와 기대 벡터 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 핀다. 반대로 경계 변수가 작으면 입력 벡터와 기대 벡터 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 벡터들을 대략적으로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경험적으로 경계 변수를 설정해야 단점이 있다. 그리고 연결 가중치를 조정하는 과정에서 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식율을 저하시킨다. 된 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴들과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 가중치 조정에 적용한 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 성능을 확인하기 위해서 실제 운송 컨테이너 영상들을 대상으로 실험한 결과, 기존의 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.

An Moving Object Segmentation for Moving Camera (이동카메라 환경에서 이동물체분할에 관한 연구)

  • Cho, Youngseok;Kang, Jingu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.47-48
    • /
    • 2013
  • 본 논문에서는 이동 카메라 환경에서 이동물체 추적을 위한 영상 분할에 대하여 연구하였다. 입력영상으로 부터 이동물체영역을 분할하기위하여 입력영상에 대하여 윤곽선을 구한 다음 윤곽선 영역에 대하여 BMA을 이용하여 이동벡터를 구한다. 구해진 이동벡터를 같은 특성의 벡터들을 분류하여 이동물체를 분할한다. 제안된 알고리즘이 다중 이동물체의 분할이 가능하였다.

  • PDF

Input Pattern Vector Extraction and Pattern Recognition of Taste using fMRI (fMRI를 이용한 맛의 입력패턴벡터 추출 및 패턴인식)

  • Lee, Sun-Yeob;Lee, Yong-Gu;Kim, Dong-Ki
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.419-426
    • /
    • 2007
  • In this paper, the input pattern vectors are extracted and the learning algorithms is designed to recognize taste(bitter, sweet, sour and salty) pattern vectors. The signal intensity of taste are used to compose the input pattern vectors. The SOM(Self Organizing Maps) algorithm for taste pattern recognition is used to learn initial reference vectors and the ot-star learning algorithm is used to determine the class of the output neurons of the sunclass layer. The weights of the proposed algorithm which is between the input layer and the subclass layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVQ(Learning Vector Quantization) algorithm. The pattern vectors are classified into subclasses by neurons in the subclass layer, and the weights between subclass layer and output layer are learned to classify the classified subclass, which is enclosed a class. To classify the pattern vectors, the proposed algorithm is simulated with ones of the conventional LVQ, and it is confirmed that the proposed learning method is more successful classification than the conventional LVQ.

  • PDF

Input Pattern Vector Extraction and Pattern Recognition of EEG (뇌파의 입력패턴벡터 추출 및 패턴인식)

  • Lee, Yong-Gu;Lee, Sun-Yeob;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.95-103
    • /
    • 2006
  • In this paper, the input pattern vectors are extracted and the learning algorithms is designed to recognize EEG pattern vectors. The frequency and amplitude of alpha rhythms and beta rhythms are used to compose the input pattern vectors. And the algorithm for EEG pattern recognition is used SOM to learn initial reference vectors and out-star learning algorithm to determine the class of the output neurons of the subclass layer. The weights of the proposed algorithm which is between the input layer and the subclass layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVQ algorithm, and pattern vectors is classified into subclasses by neurons which is being in the subclass layer, and the weights between subclass layer and output layer is learned to classify the classified subclass, which is enclosed a class. To classify the pattern vectors of EEG, the proposed algorithm is simulated with ones of the conventional LVQ, and it was a confirmation that the proposed learning method is more successful classification than the conventional LVQ.

  • PDF

Fast VQ Encoding Algorithm (백터 양자화의 고속 부호화 알고리즘)

  • 채종길;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.4
    • /
    • pp.685-690
    • /
    • 1994
  • A problem associated with vector quantization(VQ) is the computational complexity incurred in searching for a codevector with the closet to a given input vector, where the complexity increases exponentionally with proportion to codebook size and then limits practical application. In this paper, a simple and fast, but efficient, VQ encoding algorithm is presented using a reference codevector as start codevector of premature exit condition, which eliminates distance claculation of unlikely codevectors. The algorithm is to find reference codevector having the possibility to be the nearest vector to input vector first and then to incorporate premature exit condition. The proposed algorithm needs only 10~15% of mathematical operations compared with the conventional full search VQ. Algorithm the number of additions and comparsions of the proposed algorithm is not reduced greatly, the number of multiplication is reduced up to 70~80% compared with other fast VQ encoding methods.

  • PDF

Hierarchical Architecture of Multilayer Perceptrons for Performance Improvement (다층퍼셉트론의 계층적 구조를 통한 성능향상)

  • Oh, Sang-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.166-174
    • /
    • 2010
  • Based on the theoretical results that multi-layer feedforward neural networks with enough hidden nodes are universal approximators, we usually use three-layer MLP's(multi-layer perceptrons) consisted of input, hidden, and output layers for many application problems. However, this conventional three-layer architecture of MLP shows poor generalization performance in some applications, which are complex with various features in an input vector. For the performance improvement, this paper proposes a hierarchical architecture of MLP especially when each part of inputs has a special information. That is, one input vector is divided into sub-vectors and each sub-vector is presented to a separate MLP. These lower-level MLPs are connected to a higher-level MLP, which has a role to do a final decision. The proposed method is verified through the simulation of protein disorder prediction problem.

Neural network based Object segmentation and optical flow estimation using spatial feature (공간적 특징을 이용한 신경 회로망 기반 객체 분할 및 움직임 예측)

  • 김형진;이동규;이두수
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.837-840
    • /
    • 2000
  • 동영상에서 움직이는 객체 분할 및 모션 예측을 동시에 수행할 수 있는 연구는 다양한 방법으로 시도 되어 왔다. 실제 이미지를 서로 다른 움직임이나 서로 다른 공간적인 특정 영역으로 분리 될 수 있다고 가정 한다면 복수의 객체 또는 객체의 움직임으로 표현 할 수 있다. 객체 분할 측면에서 볼 때 효율적인 분할을 위해서는 특징 입력 벡터의 선택이 중요한 변수로 작용한다. 본 연구에서는 정밀한 객체 분할을 위해 밝기, 질감(Texture) 정보와 같은 정지영상의 특징 입력 벡터와 움직임 벡터 같은 동영상의 특징 입력 벡터를 동시에 사용한다. 분리된 객체는 각각의 클래스를 구성하게 되고 이를 위한 클래스 분류기로서 Median Radial Basis 신경 회로망을 사용한다. 객체 분할과 움직임 예측을 위해서 확률적 방법을 통한 에너지 함수를 구하고 비용함수를 도입한다. 신경 회로망의 각 Basis 함수는 영상의 특정한 영역에서 활성화되며 객체의 분류를 위해 신경 회로망 출력으로 가중치의 합으로서 나타나게 된다.

  • PDF