인공위성에 사용되는 센서들의 장착 방향은 보통 방향코사인행렬로 구현되어 있다. 이 방향코사인행렬의 극성검증을 위해서는 센서에 알고 있는 외부 자극을 인가하여 출력되는 응답을 확인하는 방법이 사용된다. 그러나 자이로 센서의 경우에는 인위적인 외부 자극 없이 지구 자전에 의한 회전각속도가 방향코사인행렬의 극성검증을 위한 입력으로 사용될 수 있다. 본 연구에서는 인공위성의 조립 및 시험 단계에서 여러 번 수행되는 자이로 센서의 상태점검 시험결과를 이용하여 자이로 센서의 방향코사인행렬 극성검증을 수행하였다.
본 논문은 Wavelet 변환 영역에서 특징 벡터를 추출하여 ART2 신경회로망으로 실장 PCB 패턴을 인식하는 알고리즘을 제안한다. PCB 형태 정보는 Wavelet에 의해 주파수 영역으로 변환되고, 이들 계수 행렬로부터 특징 벡터로서 추출된다. ART2 신경회로망은 이러한 특징 벡터들을 입력벡터로 사용하여 인식한다. 실장 PCB 영상 55장을 사용하여 실험한 결고, 학습된 입력패턴은 물론 비학습 입력패턴에 대해서도 약 99%의 인식율을 얻었다. 또한 제안된 방법은 Wavelet 변환 영역사에서 수직, 수평, 대각선 정보만으로 특징 벡터를 구축함으로써 특징 추출 과정이 비교적 간단하고 특징 벡터의 수도 줄일 수 있어, 효과적인 특징벡터의 추출이 가능함을 보였다.
데이터의 양이 증가하면서 인공신경망을 통한 데이터 분석 기술이 주목받고 있으며, 텍스트, 그림, 동영상 등에 이르기까지 다양한 종류의 데이터를 자동으로 분석하여, 번역기, 채팅봇, 그림 캡션 자동 생성 등에 대한 연구 및 서비스 개발에 활용되고 있다. 인공신경망 기반으로 수행된 많은 연구들이 공통적으로 가진 한계가 있는데, 그것은 은닉층에 대한 해석이 어렵다는 것이다. 가령, 입력층, 은닉층, 그리고 결과층으로 이루어진 인공신경망을 임의의 데이터로 학습시키면, 입력층과 은닝층 사이에 존재하는 행렬은 해당 데이터에 존재하는 패턴 정보를 내포하게 된다. 따라서, 행렬에 존재하는 패턴 정보를 직접 분석할 수 있다면, 인공신경망 결과물에 대한 해석이 가능할 뿐만 아니라 성능을 높이기 위해 어떤 조정이 필요한지에 대한 직관도 얻을 수 있을 것이다. 하지만, 이 행렬의 실체는 숫자로 이루어진 벡터이므로 사람이 직접 해석하는 것은 불가능하며, 지금까지 수행되어온 대부분의 인공신경망 연구들은 공통적으로 이러한 한계점을 가지고 있다. 본 연구는 데이터에 존재하는 패턴을 잡아내면서도 해석이 가능한 토픽 모델과 인공신경망의 결과물을 비교함으로써, 인공신경망 은닉층 해석에 대한 실마리를 찾기 위한 연구이다. 실험을 통해 토픽과 은닉층 패턴의 유사성을 검증하고, 향후 인공신경망 연구에서 은닉층에 대한 가능성을 논한다.
본 논문에서는 2차원 Hopfield 신경회로망 모델에 근거한 새로운 광 연산 메모리 시스템을 구현하였다. 2차원 영상의 실시간 처리를 위하여 입력 공간광변조기와 메모리 마스크는 상용 LCTV를 사용하고 특히, 4차원 메모리 행렬은 2차원 부행렬 마스크의 2차원적 배열로 구성하였으며 임의의 이력 패턴과 메모리 행렬간의 내적 계산은 multifocus hololens를 사용하여 처리하였다. 출력 영상은 전자적으로 thresholding 된 후 2차원 CCD 카메라를 사용하여 다시 연상 메모리 시스템의 입력으로 궤환되도록 루프를 구성하였다. 본 시스템의 연상 기억 및 오류 정정 능력에 대한 실험결과를 통해 본 논문에서 제시된 새로운 2차원 신경회로망 모델의 광학적 구현 시스템은 앞으로 패턴 인식, machine vision 등과 같은 분야에 실질적 응용이 가능하다.
본 논문에서는 의용영상의 병소부위 특징을 추출하는 알고리즘을 제시하였다. 특징 추출을 위해 위장영상을 입력하여 DCT계수 행렬을 구하였다. DCT계수 행렬은 저주파 영역으로 에너지가 집중되기 때문에 저주파 영역에서 128개의 특징 파라미터를 추출하였다. 추출된 특징 파라미터를 이용하여 질환영상과 정상영상을 비교하여 그래프로 나타내었다. 특징 파라미터는 PACS의 차등압축과 CAD를 위한 입력 파라미터로 활용될 수 있을 것이다.
이 논문은 부분공간 시스템 확인기법을 이용하여 전단빌딩의 강성행렬과 부재의 강성을 추정하는 기법을 소개한다. 시스템 행렬은 입력-출력 데이터로 구성된 행켈행렬을 LQ 분해와 특이치 분해를 통해 추정한다. 추정된 시스템 행렬은 닮음 변환을 통해 실제 좌표축으로 변환하고, 변환된 시스템 행렬로부터 강성행렬을 계산한다. 추정된 강성행렬의 정확성과 안정성은 행켈행렬의 크기에 따라 변한다. 전단빌딩의 기저 유한요소 모델을 이용하여 행켈행렬의 크기에 따른 강성행렬의 추정 오차 곡선을 구한다. 오차 곡선을 이용하여 목표 정확도 수준에 부합하는 행켈행렬의 크기들을 결정한다. 이렇게 선택된 행렬의 크기들 중에서 부분공간 시스템 확인의 계산비용을 고려하여 보다 적절한 행렬의 크기를 결정할 수 있다. 결정된 크기의 행켈행렬을 이용하여 강성행렬을 추정하고 추정된 강성행렬로부터 부재의 강성을 추정한다. 제안된 방법을 손상 전후의 5층 전단빌딩 수치 예제에 적용하여 타당성을 검증한다.
통계학과 기계학습의 다양한 기법을 이용하여 문서집합을 군집화하기 위해서는 우선 군집화분석에 적합한 데이터구조로 대상 문서집합을 변환해야 한다. 문서군집화를 위한 대표적인 구조가 문서-단어행렬이다. 각 문서에서 발생한 특정단어의 빈도값을 갖는 문서-단어행렬은 상당부분의 빈도값이 0인 희소성문제를 갖는다. 이 문제는 문서군집화의 성능에 직접적인 영향을 주어 군집화결과의 성능감소를 초래한다. 본 논문에서는 문서-단어행렬의 희소성문제를 해결하기 위하여 인자분석을 통한 인자점수를 이용하였다. 즉, 문서-단어행렬을 문서-인자점수행렬로 바꾸어 문서군집화의 입력데이터로 사용하였다. 대표적인 문서군집화 알고리즘인 자기조직화지도에 적용하여 문서-단어행렬과 문서-인자점수행렬에 대한 문서군집화의 결과들을 비교하였다.
본 논문에서는 입력에 제한이 있는 시간지연 비선형 시스템에 대한 퍼지 $H_2/H_{\infty}$ 제어기 설계 방법을 제시한다. 포화입력을 갖는 시간지연 비선형 시스템을 시간지연과 포화입력을 갖는 Takagi-Sugeno 퍼지 모델로 표현하고 병렬분산보상(PDC)의 개념을 이용하여 제어기를 설계한다. Lyapunov 함수를 이용하여 시간지연과 포화입력을 갖는 $H_2/H_{\infty}$ 퍼지모델에 대한 폐루프 시스템의 안정성 조건과 LQ 성능을 최소화하는 조건을 유도하고, 퍼지 $H_2/H_{\infty}$ 제어기가 존재할 충분조건을 선형행렬부등식(LMI: liner matrix inequality)을 이용하여 구한다. 제어기는 선형행렬부등식의 해를 구하므로써 바로 구할 수 있으며, 설계된 퍼지 $H_2/H_{\infty}$ 제어기는 $H_{\infty}$ 노옴 한계값을 만족하면서 LQ성능의 상한값을 최소화한다. 마지막으로 포화압력으로 포화압력을 가지는 시간지연 비선형 시스템에 대해 퍼지 $H_2/H_{\infty}$ 제어기 설계 사례를 보인다.
본 논문에서는 ICP (Iterative Closest Point) 알고리즘을 이용한 영상등록에서의 회전 성분 신뢰도를 추정할 수 있는 행렬을 유도하 였다. ICP 알고리즘 결과의 신뢰도는 영상등록을 하려는 입력 물체의 모양에 따라 다르다. 보통 원통과 같은 어떤 축에 대한 회전체보 다는 더 복잡하고 두드러진 특징이 많은 물체일수록 신뢰도가 높은 결과를 얻게 된다. 본 논문에서는 ICP 알고리즘으로 구한 값의 신뢰도를 점으로 표현되는 입력물체에서의 각 점의 위치와 법선 벡터에 대한 식으로 나타내었다. 입력물체에 잡음이 들어갔을 때, 이로 인한 ICP 결과의 오차를 제시한 신뢰도를 이용해 추정하였다. 마지막으로 타원체 합성영상에 대한 신뢰도와 잡음이 들어갔을 때의 ICP 결과의 오차를 컴퓨터 모의실험으로 비교 분석하여 이론치와 부합되는 것을 보였다.
이 논문은 얼굴인식을 수행하기 위해서 이미 잘 알려진 주성분 분석법과 선형판별 분석법에 레이디얼 기저 함수 신경망을 결합한 인식 알고리즘을 제시하였다. 입력된 원래의 얼굴영상은 주성분분석법을 통하여 차원을 줄인 고유 얼굴 가중치를 산출한다. 이 가중치 벡터를 선형판별 분석법의 입력데이터로 사용하여 선형판별분석의 변환행렬을 계산할 때 클래스 내의 분산행렬에서 특이점이 발생하지 않도록 하면서 특징벡터를 산출하여 인식을 수행하였다. 두 번째 시도에서는 선형판별분석법에 의해 생성된 특징벡터를 레이디얼 기저 함수 신경망에 입력하여 학습하고 얼굴인식을 수행하였다. ORL DB의 얼굴영상에 대해 실험한 결과 93.5%의 인식률을 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.