• Title/Summary/Keyword: 입력처리 지도

Search Result 1,640, Processing Time 0.025 seconds

Determination of coagulant input rate in water purification plant using K-means algorithm and GBR algorithm (K-means 알고리즘과 GBR 알고리즘을 이용한 정수장 응집제 투입률 결정 기법)

  • Kim, Jinyoung;Kang, Bokseon;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.792-798
    • /
    • 2021
  • In this paper, an algorithm for determining the coagulant input rate in the drug-injection tank during the process of the water purification plant was derived through big data analysis and prediction based on artificial intelligence. In addition, analysis of big data technology and AI algorithm application methods and existing academic and technical data were reviewed to analyze and review application cases in similar fields. Through this, the goal was to develop an algorithm for determining the coagulant input rate and to present the optimal input rate through autonomous driving simulator and pilot operation of the coagulant input process. Through this study, the coagulant injection rate, which is an output variable, is determined based on various input variables, and it is developed to simulate the relationship pattern between the input variable and the output variable and apply the learned pattern to the decision-making pattern of water plant operating workers.

User Transparent File Encryption Mechanisms at Kernel Level (사용자 투명성을 갖는 커널 수준의 파일 암호화 메카니즘)

  • Kim Jae-Hwan;Park Tae-Kyou;Cho Gi-Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.3
    • /
    • pp.3-16
    • /
    • 2006
  • Encipherment in existing OS(Operating Systems) has typically used the techniques which encrypt and decrypt entirely a secret file at the application level with keys chosen by user In this mechanism it causes much overhead on the performance. However when a security-classified user-process writes a secret file, our proposed mechanism encrypts and stores automatically and efficiently the file by providing transparency to the user at the kernel level of Linux. Also when the user modifies the encrypted secret file, this mechanism decrypts partially the file and encrypts partially the file for restoring. When user reads only the part of the encrypted file, this mechanism decrypts automatically and partially the file. Therefore our proposed mechanism provides user much faster enciphering speed than that of the existing techniques at the application level.

Security Verification of Korean Open Crypto Source Codes with Differential Fuzzing Analysis Method (차분 퍼징을 이용한 국내 공개 암호소스코드 안전성 검증)

  • Yoon, Hyung Joon;Seo, Seog Chung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1225-1236
    • /
    • 2020
  • Fuzzing is an automated software testing methodology that dynamically tests the security of software by inputting randomly generated input values outside of the expected range. KISA is releasing open source for standard cryptographic algorithms, and many crypto module developers are developing crypto modules using this source code. If there is a vulnerability in the open source code, the cryptographic library referring to it has a potential vulnerability, which may lead to a security accident that causes enormous losses in the future. Therefore, in this study, an appropriate security policy was established to verify the safety of block cipher source codes such as SEED, HIGHT, and ARIA, and the safety was verified using differential fuzzing. Finally, a total of 45 vulnerabilities were found in the memory bug items and error handling items, and a vulnerability improvement plan to solve them is proposed.

Digital Filter Algorithm based on Mask Matching for Image Restoration in AWGN Environment (AWGN 환경에서 영상복원을 위한 마스크매칭 기반의 디지털 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.214-220
    • /
    • 2021
  • In modern society, various digital communication equipments are being used due to the influence of the 4th industrial revolution, and accordingly, interest in removing noise generated in the data transmission process is increasing. In this paper, we propose a filtering algorithm to remove AWGN generated during digital image transmission. The proposed algorithm removes noise based on mask matching to preserve information such as the boundary of an image, and uses pixel values with similar patterns according to the pattern of the input pixel value and the surrounding pixels for output calculation. To evaluate the proposed algorithm, we simulated with existing AWGN removal algorithms, and analyzed using enlarged image and PSNR comparison. The proposed algorithm has superior AWGN removal performance compared to the existing method, and is particularly effective in images with strong noise intensity of AWGN.

A technique for predicting the cutting points of fish for the target weight using AI machine vision

  • Jang, Yong-hun;Lee, Myung-sub
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.4
    • /
    • pp.27-36
    • /
    • 2022
  • In this paper, to improve the conditions of the fish processing site, we propose a method to predict the cutting point of fish according to the target weight using AI machine vision. The proposed method performs image-based preprocessing by first photographing the top and front views of the input fish. Then, RANSAC(RANdom SAmple Consensus) is used to extract the fish contour line, and then 3D external information of the fish is obtained using 3D modeling. Next, machine learning is performed on the extracted three-dimensional feature information and measured weight information to generate a neural network model. Subsequently, the fish is cut at the cutting point predicted by the proposed technique, and then the weight of the cut piece is measured. We compared the measured weight with the target weight and evaluated the performance using evaluation methods such as MAE(Mean Absolute Error) and MRE(Mean Relative Error). The obtained results indicate that an average error rate of less than 3% was achieved in comparison to the target weight. The proposed technique is expected to contribute greatly to the development of the fishery industry in the future by being linked to the automation system.

S&P Noise Removal Filter Algorithm using Plane Equations (평면 방정식을 이용한 S&P 잡음제거 필터 알고리즘)

  • Young-Su, Chung;Nam-Ho, Kim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.47-53
    • /
    • 2023
  • Devices such as X-Ray, CT, MRI, scanners, etc. can generate S&P noise from several sources during the image acquisition process. Since S&P noise appearing in the image degrades the image quality, it is essential to use noise reduction technology in the image processing process. Various methods have already been proposed in research on S&P noise removal, but all of them have a problem of generating residual noise in an environment with high noise density. Therefore, this paper proposes a filtering algorithm based on a three-dimensional plane equation by setting the grayscale value of the image as a new axis. The proposed algorithm subdivides the local mask to design the three closest non-noisy pixels as effective pixels, and applies cosine similarity to a region with a plurality of pixels. In addition, even when the input pixel cannot form a plane, it is classified as an exception pixel to achieve excellent restoration without residual noise.

Hair Classification and Region Segmentation by Location Distribution and Graph Cutting (위치 분포 및 그래프 절단에 의한 모발 분류와 영역 분할)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.1-8
    • /
    • 2022
  • Recently, Google MedeiaPipe presents a novel approach for neural network-based hair segmentation from a single camera input specifically designed for real-time, mobile application. Though neural network related to hair segmentation is relatively small size, it produces a high-quality hair segmentation mask that is well suited for AR effects such as a realistic hair recoloring. However, it has undesirable segmentation effects according to hair styles or in case of containing noises and holes. In this study, the energy function of the test image is constructed according to the estimated prior distributions of hair location and hair color likelihood function. It is further optimized according to graph cuts algorithm and initial hair region is obtained. Finally, clustering algorithm and image post-processing techniques are applied to the initial hair region so that the final hair region can be segmented precisely. The proposed method is applied to MediaPipe hair segmentation pipeline.

A Study on Extraction of Skin Region and Lip Using Skin Color of Eye Zone (눈 주위의 피부색을 이용한 피부영역검출과 입술검출에 관한 연구)

  • Park, Young-Jae;Jang, Seok-Woo;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.19-30
    • /
    • 2009
  • In this paper, We propose a method with which we can detect facial components and face in input image. We use eye map and mouth map to detect facial components using eyes and mouth. First, We find out eye zone, and second, We find out color value distribution of skin region using the color around the eye zone. Skin region have characteristic distribution in YCbCr color space. By using it, we separate the skin region and background area. We find out the color value distribution of the extracted skin region and extract around the region. Then, detect mouth using mouthmap from extracted skin region. Proposed method is better than traditional method the reason for it comes good result with accurate mouth region.

Using Mean Shift Algorithm and Self-adaptive Canny Algorithm for I mprovement of Edge Detection (경계선 검출의 향상을 위한 Mean Shift 알고리즘과 자기 적응적 Canny 알고리즘의 활용)

  • Shin, Seong-Yoon;Pyo, Seong-Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.33-40
    • /
    • 2009
  • Edge detection is very significant in low level image processing. However, majority edge detection methods are not only effective enough cause of the noise points' influence, even not flexible enough to different input images. In order to sort these problems, in this paper an algorithm is presented that has an extra noise reduction stage at first, and then automatically selects the both thresholds depending on gradient amplitude histogram and intra class minimum variance. Using this algorithm, can fade out almost all of the sensitive noise points, and calculate the propose thresholds for different images without setting up the practical parameters artificially, and then choose edge pixels by fuzzy algorithm. In finally, get the better result than the former Canny algorithm.

Detects depression-related emotions in user input sentences (사용자 입력 문장에서 우울 관련 감정 탐지)

  • Oh, Jaedong;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1759-1768
    • /
    • 2022
  • This paper proposes a model to detect depression-related emotions in a user's speech using wellness dialogue scripts provided by AI Hub, topic-specific daily conversation datasets, and chatbot datasets published on Github. There are 18 emotions, including depression and lethargy, in depression-related emotions, and emotion classification tasks are performed using KoBERT and KOELECTRA models that show high performance in language models. For model-specific performance comparisons, we build diverse datasets and compare classification results while adjusting batch sizes and learning rates for models that perform well. Furthermore, a person performs a multi-classification task by selecting all labels whose output values are higher than a specific threshold as the correct answer, in order to reflect feeling multiple emotions at the same time. The model with the best performance derived through this process is called the Depression model, and the model is then used to classify depression-related emotions for user utterances.